

Outline

Introduction:

- Analysis motivation
- JLab
- CLAS
- EG1-DVCS experiment
- Analysis goal

Analysis:

- PID
- Asymmetries

sPlot Technique:

- Overview
- In use
- Kinematics of data sample

Results:

Beam asymmetry extraction

Introduction: Analysis Motivation

- π -electroproduction from quasi-free neutron in ¹⁴ND₃
 - Actually looking at

$$e d \rightarrow e' \pi p (p_s)$$

- Motivation:
 - Electroproduction with high Q²
 - Polarised beam and target
 - Published data on neutron is limited
 - Process sensitive to contributions from individual nucleon resonance states
 - Provide constraints to Partial Wave Analyses for resonance parameters

Introduction: JLab

- Thomas Jefferson National Accelerator Facility, Virginia, USA
- Pre-12 GeV upgrade (just completed)
- Precision scattering experiments in 3 experimental halls
- Highly polarised electron beam (up to ~85%)
- Superconducting RF linacs maximum E_{beam} of 6 GeV

Introduction: CLAS

- CEBAF Large Acceptance Spectrometer (CLAS) surrounding the target
- Near 4π solid angle coverage
- Toroidal magnet system (torus magnet)
- 6 independent sectors with detector subsystems:
 - Drift Chambers (DC)
 - → measure momentum and charge of particles
 - Cherenkov Counters (CC)
 - → distinguish electrons from other particles
 - Time-of-Flight Scintillators (TOF)
 - → measure time, therefore determine speed
 - Electromagnetic Calorimeters (EC)
 - → identify electrons and detect neutrals
- Inner Calorimeter (IC) inside (DC)
 - detect 4-15 degrees photons

Introduction: EG1-DVCS Experiment

- 2009 experiment with longitudinally **polarised** beam and solid state targets (using Dynamic Nuclear Polarisation):
 - e beam ~80% polarisation
 - proton target ~80%, and neutron target ~30%

Expt. Part	Target	Vertex	Beam Energy
В	¹⁴ NH ₃	-68 cm	5.97 GeV
С	¹⁴ ND ₃	-68 cm	5.76 GeV

- Data taken:
 - 70% on ¹⁴NH₃, 20% on ¹⁴ND₃
 - ~10% on ¹²C, and 1% empty target
- Target in liquid ⁴He bath at low temperature and pressure

Introduction: Analysis Goal

- π electroproduction from quasi-free neutron in ¹⁴ND₃
 - Background studies using ¹⁴NH₃ and ¹²C datasets
 - Actually looking at
 e d → e' π-p (p_s)

- Perform psuedo-exclusive analysis to fully reconstruct reaction:
 - correct for bin migration/dilution effects caused by Fermi momentum
 - Identify events where the proton in the deuteron is a spectator
- Low statistics for data sample:
 - use likelihood method for analysis
 - use background subtraction rather than cuts-based analysis
- Differs from standard approach of exclusivity cuts on kinematically reconstructed values such as missing mass, missing energy, etc.

- Exclusive event (without detection of the deuteron's spectator proton) e d \rightarrow e' π -p (p_s)
- Particle Identification consists of finding one good electron, π -, and proton for the event
- Series of cuts are performed, including fiducial cuts:
 - Electromagnetic Calorimeter require good energy reconstruction for electron
 - Inner Calorimeter (low angle) shadow avoid energy losses and multiple scattering

Monday 11 Sept. 2017

 π - Electroproduction from the Neutron at CLAS

Discriminate electrons from π - using:

- Minimum energy deposited in inner Electromagnetic Calorimeter
 - EC_{Inner} > 0.060 GeV

- Minimum ratio of energy:momentum (sampling fraction)
 - Sampling fraction > 0.23 c

- Minimum number of photoelectrons (nphe) in Cherenkov Counter
 - Nphe > 1.7

PID for protons and π -:

- vertex position window (4cm)
- fiducial cut for the shadowing of the Inner Calorimeter
- momentum dependent β cut

p dependent β cut shown in plot is used to discriminate protons from π^+ , K^+ , deuteron, etc.

p (GeV/c)

Completed PID for fully exclusive e' π - p

Look at:

 $e n \rightarrow e' \pi X$

assuming stationary free neutron target

Scaling factor for visual purposes

<u>Cone angle:</u> difference in 3 vector angle between measured and reconstructed proton

Proton cone angle vs proton missing mass

For exclusive measurement of e' π -p, compare proton missing mass (above) with spectator missing mass (below).

proton missing mass: $e n \rightarrow e' \pi^- X$

spectator missing mass: $e d \rightarrow e' \pi^- p X$

- Again, expect signal peak at mass of proton (~0.94GeV/c²)
- Proton missing mass peak is Fermi smeared
- Spectator missing mass peak just depends on experimental resolution

Analysis: Asymmetries

- Using electron beam → momentum transfer vector is not aligned along beamline
 - Have x and y polarisation components too
- 3 different polarisation states, defined by:

$$\sigma = \sigma_0 (1 + P_B A_{LU} + P_T A_{UL} + P_B P_T A_{LL})$$

- where P_B and P_T can be positive or negative
- Asymmetries are sin and cos functions of φ
- Center-of-mass decay angles for final state
 - $-\theta = 0$ for forward going π -
 - φ is opening angle between $(\vec{q} \times \vec{k_i})$ and $(\vec{q} \times \vec{k})$

L. Tiator, et al. [2017].

Amplitude reconstruction from complete electroproduction experiments and truncated partial-wave expansions.

arXiv:1702.08375v1

Analysis: Asymmetries

- Formalism: $\sigma = \sigma_0 (1 + P_B A_{LU} + P_T A_{UL} + P_B P_T A_{LL})$
- Spin averaged cross section:

$$\sigma_0 = \sigma_T + \epsilon \sigma_L + \sqrt{2\epsilon(1+\epsilon)} cos(\phi) \sigma_{TL} + \epsilon cos(2\phi) \sigma_{TT}$$

Beam spin asymmetry is the simplest

$$A_{LU} = \sigma_e/\sigma_0$$

$$\sigma_e = \sqrt{2\epsilon(1-\epsilon)}\sigma_{T'}sin(\phi)$$

where ϵ is the virtual photon's polarisation

$$\epsilon = 1/[1 + 2(1 + \nu^2/Q^2)tan^2(\theta_e)]$$

υ is energy of vitual photon

Q² is squared virtual photon 4 momentum

 $\theta_{\rm e}$ is scattered electron polar angle to beamline

Analysis: Asymmetries

• Target asymmetry: $A_{UL} = \sigma_z/\sigma_0$

where
$$\sigma_z = \sqrt{2\epsilon(1+\epsilon)}[P_x\sigma_{TL_x}sin(\phi) + P_y\sigma_{TL_y}cos(\phi) + P_z\sigma_{TL_z}sin(\phi)] + \epsilon[P_x\sigma_{TT_x}sin(2\phi) + P_y\sigma_{TT_y}cos(2\phi) + P_z\sigma_{TT_z}sin(2\phi)] + P_y(\sigma_{T_y} + \epsilon\sigma_{L_y})$$

• Double asymmetry: ${\cal A}_{LL}=-\sigma_{ez}/\sigma_0$

where
$$\sigma_{ez} = \sqrt{2\epsilon(1-\epsilon)}[P_x\sigma_{TL_x'}\cos(\phi) + P_y\sigma_{TL_y'}\sin(\phi) + P_z\sigma_{TL_z'}\cos(\phi)] + \sqrt{1-\epsilon^2}[P_x\sigma_{TT_x'} + P_z\sigma_{TT_z'}]$$

With direction cosines being:

$$P_z = cos(\theta_q)$$
 $P_v = -sin(\theta_q)sin(\phi)$ $P_x = sin(\theta_q)cos(\phi)$

sPlot Technique: Overview

Likelihood fit – obtain event by event weights for signal

- sPlot is a more elaborate sideband subtraction
- Use spectator missing mass as a discriminating variable
- Calculate sWeights based on this
 - can subtract background not coming from the e d → e' pi- p (p_s) hypothesis

$_{s}\mathcal{P}lot$:

a statistical tool to unfold data distributions

M. Pivk^a and F.R. Le Diberder^b

^a CERN, CH-1211 Geneva 23, Switzerland

b Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université de Paris-Sud, F-91898 Orsay, France

Abstract

The paper advocates the use of a statistical tool dedicated to the exploration of data samples populated by several sources of events. This new technique, called $_s\mathcal{P}lot$, is able to unfold the contributions of the different sources to the distribution of a data sample in a given variable. The $_s\mathcal{P}lot$ tool applies in the context of a Likelihood fit which is performed on the data sample to determine the yields of the various sources.

arXiv:physics/0402083

sPlot Technique: In Use

- Model ND₃ signal with Gaussian, and use NH₃ as background.
- Focus on missing mass of the spectator proton in the region of 0.81 → 1.08 GeV/c².
 - Avoid multi-meson production threshold.

Solid **black** points - ND₃ signal data

Solid **red** line — Total fit Probability Density Function (PDF)

Dashed red line – Background PDF based on NH₃

data template

Dashed black line - signal PDF - Gaussian

- Integrated over all variables (W, theta, etc.)
- χ^2 for the fit is 1.0697

- Spectator proton missing mass peak is seen in NH3 (and C12) due to the reaction with a bound neutron
 - found to have a larger spectator proton missing momentum
- This method should take care of dilution factor
 - will isolate **polarised** neutrons in deuterium only (avoiding nitrogen)
 - signal most like a free neutron

sPlot Technique: Kinematics of data sample

Using weights obtained for each event, can reconstruct distributions of variables:

- missing momentum of spectator proton showing peak at 60MeV
- W (invariant mass of detected proton and pion) showing resonance peaks

Signal and background

sPlot Technique: Kinematics of data sample

Weights can also show kinematic range of experiment:

- Can see Q^2 for resonances between 1.4 \rightarrow 1.6 GeV/c² and 1.6 \rightarrow 1.8 GeV/c²
- $\cos\theta$ shows most π are produced in very forward direction

sPlot Technique: Kinematics of data sample

Binning in W:

Integrating over all other variables $(\theta, Q^2, etc.)$

4 W bins:

 $1.0 \rightarrow 1.4 \text{ GeV/c}^2$ $1.4 \rightarrow 1.6 \text{ GeV/c}^2$ $1.6 \rightarrow 1.8 \text{ GeV/c}^2$

 $1.8 \rightarrow 3.0 \text{ GeV/c}^2$

Mean values:

 $\theta_{\rm g}$ (angle of momentum transfer in lab frame) = ~36 deg decreasing to ~20 deg ε (virtual photon polarisation) = \sim 0.89 decreasing to \sim 0.78

Results: Beam Asymmetry Extraction

On going analysis effort:

- Looking at W bin of 1.6 → 1.8 GeV/c²
- Asymmetry produced from yields of events with opposite beam polarisation states:

$$A(\phi) = \frac{N^{\rightarrow} - N^{\leftarrow}}{N^{\rightarrow} + N^{\leftarrow}}$$

• Initial fit with P_0 *sin(φ)

Results: Beam Asymmetry Extraction

Conclusions and Outlook

- Presented ongoing analysis effort using sPlot technique for weighting events in π electroproduction from quasi-free neutron
- Have just demonstrated differences of counts as a function of ϕ in a conventional asymmetry fit
- Low statistics
 - will now use maximum likelihood and compare observable values obtained
- Method will be applied for target and double spin asymmetry