Photoproduction of Light Exotic & Strange Mesons

Paul Eugenio Florida State University Tallahassee, FL USA

Excited QCD 2017 7-13 May 2017 Sintra, Portugal

Overview

Motivation & QCD Exotics
Recent Results from Photoproduction

Exotic Hybrid Search in 3π
Strange Hybrids in Kππ

Upcoming Experimental Programs

Hadronic Matter

The Quark Model of hadrons works surprisingly well, yet the Quark Model is an approximation to QCD

We can use it to build "hadrons", particles of matter with sizes ~1 fm

*Phys.Rev. D82 (2010) 034508

Lattice QCD Predictions

Dudek, Edwards, Guo, & Thomas PRD 88, 094505 (2013)

$$I(\tau) = \sum_{k \epsilon \epsilon'} \epsilon \epsilon' \rho_{\epsilon \epsilon'}(\tau) \sum_{\alpha \alpha'} {}^{k \epsilon'} V_{\alpha'}^{* \epsilon'} A_{\alpha'}^{*}(\tau)^{k \epsilon} V_{\alpha}^{\epsilon} A_{\alpha}(\tau)$$

For unpolarized beam & target:

$$I(\tau) = \frac{1}{2} \sum_{k \epsilon} \left| \sum_{\alpha} \sum_{k \epsilon} V_{\alpha} A_{\alpha}(\tau) \right|^{2}$$

Helicity Decay Amplitudes

unknown

 $A_{\alpha M}(\tau) = A_X^{\lambda_1 \lambda_2; M} * A_{iso}^{\nu_1 \nu_2; \lambda_1} \cdots$

Complex parameters varied in the PWA to fit the data

Partial Wave Analysis Step 1: Decompose to Partial Waves

Partial Wave Analysis Step 1: Decompose to Partial Waves

Partial Wave Analysis Step 2: Extract Resonance Parameters

$\pi_{1}(1600) \rightarrow \pi^{+}\pi^{-}\pi^{-}$

Recent Results from Jefferson Lab CLAS

CLAS geometry optimized for peripheral production acceptance

Non-resonant 1⁻⁺ exotic wave

A. Tsaris (2016 FSU Dissertation)

 $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

Strange Hybrids

Strange Hybrids

 $\gamma p \rightarrow \Lambda K^+ \pi^+ \pi^-$

CLAS g12

K⁺

Search for Excited Strange Mesons

$K^+π^+π^-$ PWA Results for $J^P = 1^-$

preliminary

CLAS g12 K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

PWA Results of 1⁻ P

 $\begin{array}{ll} \mbox{Mass} \ m = 1414 \pm 15 \ \mbox{MeV} & (\mbox{S} = 1.3) \\ \mbox{Full width} \ \mbox{\Gamma} = 232 \pm 21 \ \mbox{MeV} & (\mbox{S} = 1.1) \end{array}$

K*(1410) DECAY MODES	Fraction (I	- i/Γ)	Confidence level	р (MeV/c)
K *(892)π	> 40	%	95%	410
Kπ	(6.6±1.3) %			612
Κρ	< 7	%	95%	305
γK^0	seen			619

Are Hybrids Produced by Glue-rich Processes?

Non-observation of $\pi_1(1600)$ in charge exchange photoproduction is consistent with exotic production via Pomeron

Non-observation of the K*(1680) in charge exchange photoproduction may hint to hybrid nature

Additional Data is Needed

See talk by Andrea Celentano on the current status

The PANDA Experiment

A study of antiproton annihilations on nucleons and nuclei in the energy range of strange and charmed hadrons

Summary & Outlook

The Quark Model of hadrons works surprisingly well, yet QCD allows for a much richer spectrum of hadronic

matter

The excitation of the gluonic fields leads to an entirely new spectrum of mesons

Several promising gluonic hybrid candidates exist.

- New results from photoproduction are shedding light on understanding the hybrid spectrum
 - $\sim \pi_1(1600)$ not observed in 3π
 - Suggests glue-rich production for hybrids
 - Search for excited strange mesons finds evidence for K*(1410) but no K*(1680)
 - Non-observation hints of a hybrid nature for K*(1680)
- Additional Data is needed and on the horizon

Future experimental programs plans to firmly identify and map out the hybrid and exotic spectrum

A wealth of new data is coming

Acknowledgements

This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-92ER40735.

Observation of Exotic $\pi_{1}(1600)$

Photoproduction of Gluonic Excitations

- It has been pointed out^{1,2,3} that in the case of photoproduction exotic hybrids should be produced copiously.
- Recent lattice calculations show that the strength of charmonium hybrid radiative decays are similar to normal mesons⁴

Very little photoproduction data exists!

¹Close *et al.* Phys. Rev. D52:1706 (1995) ³Szczepaniak *et al.* Phys. Lett. B516:72 (2001) ²Afanasev *et al*. Phys. Rev. D57:6771 (1998) ⁴ Dudek *et al*. Phys. Rev. D79:094504 (2009)

Meson Photoproduction Data* $\gamma p \rightarrow \pi^{-}\pi^{+}\pi^{+}n$

Virtually unexplored production

*Existing Data prior to recent JLab results

1.6 1.8

1.2 1.4 Mars of the month Sugar

sook 200

COMPASS: Update on the 1⁻⁺ Exotic in 3π

Non-resonant Deck

B. Ketzer (Hadron 2015)

The 1⁻⁺ is non-resonant at low t' which is in agreement with the CLAS g12 results

Low values of t':

- Mostly non-resonant production
- Good description by Deck model

High values of t':

- Deck background disappears
- Resonant component increasing
- Dominates highest t' bin