

Daniel S. Carman Jefferson Laboratory

N* Spectrum & Structure
 CLAS γ_vp → πN, KY Data
 CLAS12 N* Program
 Canaludina Demontra

Concluding Remarks

CLAS N* Program

The N* program is one of the key physics foundations of Hall B

 CLAS was designed to measure γN and γ_vN cross sections and spin observables over a broad kinematic range for exclusive reaction channels

 $\pi N, \omega N, \phi N, \eta N, \eta' N, \pi \pi N$

KY, K*Y, KY*

- Consistent results for N* parameters from different exclusive channels with different hadronic couplings and backgrounds offers model-independent support for findings

 The program goal is to probe the *spectrum* of states and their *structure* through studies of the Q² evolution of the γ_vNN* electrocouplings

- Probe the underlying degrees of freedom of the nucleon
- Study the non-perturbative strong interaction that generates N* of different quantum numbers from quark and gluons

N*2017 Workshop - Aug. 20-23, 2017

Page 2

Excited Nucleon Spectrum

[Löring, Metsch, Petry, Eur. Phys. J. A 10, 395 (2001)]

Recent LQCD predictions support CQM

[Dudek, Edwards, PRD 85, 054016 (2012)]

Excited Nucleon Structure

Nucleon structure is more complex than what can be described accounting for quark degrees of freedom only
π,ρ,ω,_.

- Low Q^2 : structure well described by adding an $(Q^2 < 5 \text{ GeV}^2)$ external M-B cloud to inner quark core -High Q^2 : quark core dominates; transition from $(Q^2 > 5 \text{ GeV}^2)$ confinement to pQCD regime

Solution Electroproduction studies from low to high Q^2 probe the detailed structure of the N* states through the γ_v NN* electrocoupling amplitudes

- Elucidate relevant degrees of freedom and their evolution with distance scale

- Only source of information on many facets of the non-perturbative strong interaction in the generation of different N* states from quarks and gluons

Jefferson Lab

CLAS N* Program Measurement Overview

Reaction	Observable	Q ² (GeV ²)	W (GeV)	Reference		
ep> epπ ⁺ π [−]	dʊ/dM, dʊ/cosθ,	2.0 - 5.0 0.25 - 0.60	1.4 - 2.0 1.34 - 1.56	PRC, arXiv:1705.01901 PRC 86, 035203 (2012)		
	do∕da	0.2 - 0.6 0.5 - 1.5	1.3 - 1.57 1.4 - 2.1	PRC 79, 015204 (2009) PRL 91, 022002 (2003)		
	A _t , A _{et}	1.0 - 6.0	1.1 - 3.0	PRC 95, 035207 (2017)		
	σ _U , σ _{LT} , σ _{TT}	1.0 - 4.6	2.0 - 3.0	PRC 90, 025205 (2014)		
	σ _U , σ _{LT} , σ _{TT}	2.0 - 4.5	1.08 - 1.16	PRC 87, 045205 (2013)		
	do/dt	1.0 - 4.6		PRL 109, 112001 (2012)		
ep> ep π ⁰	dσ/dΩ	3.0 - 6.0	1.1 - 1.4	PRL 97, 112003 (2006)		
	A _t , A _{et}	0.187 - 0.77	1.1 - 1.7	PRC 78, 045204 (2008)		
	σ _{LT'}	0.4 - 0.65	1.34 - 1.46	PRC 72, 058202 (2005)		
	A _t , A _{et}	0.5 - 1.5	1.1 - 1.3	PRC 68, 035202 (2003)		
	σ _U , σ _{LT} , σ _{TT}	0.4 - 1.8	1.1 - 1.4	PRL 88, 122001 (2002)		
	A _t , A _{et}	1.0 - 6.0	1.1 - 3.0	PRC 95, 035206 (2017)		
	A _t , A _{et}	0.05 - 5.0	1.1 - 2.6	PRC 94, 05520 (2016)		
	A _t , A _{et}	0.0065 - 0.35	1.1 - 2.0	PRC 94, 045207 (2016)		
	σ _U , σ _{LT} , σ _{TT}	1.8 - 4.5	1.6 - 2.0	PRC 91, 045203 (2015)		
ep> enπ⁺	do/dt	1.6 - 4.5	2.0 - 3.0	EPJA 49, 16 (2013)		
	σ _{LT'}	0.4 - 0.65	1.1 - 1.3	PRC 85, 035208 (2012)		
	σ _U , σ _{LT} , σ _{TT,} σ _{LT'}	1.7 - 4.5	1.15 - 1.7	PRC 77, 015208 (2008)		
	σ _U , σ _{LT} , σ _{TT}	0.25 - 0.65	1.1 - 1.6	PRC 73, 025204 (2006)		
	σ _{LT'}	0.4 - 0.65	1.34 - 1.46	PRC 72, 058202 (2005)		
	σ _U , σ _{LT} , σ _{TT}	2.12 - 4.16	1.11 - 1.15	PRC 70, 042201 (2004)		
	A _{et}	0.35 - 1.5	1.12 - 1.72	PRL 88, 082001 (2002)		

Reaction	Observable	Q ² (GeV ²)	W (GeV)	Reference
en> epπ¯	A _t , A _{et}	0.05 - 5.0	1.1 - 2.6	PRC 94, 05520 (2016)
	σ _U , σ _{LT} , σ _{TT}	1.6 - 4.6	2.0 - 3.0	PRC 95, 035202 (2017)
ep> ep ղ	σ _U , σ _{LT} , σ _{TT}	0.13 - 3.3	1.5 - 2.3	PRC 76, 015204 (2007)
	dσ∕dΩ	0.25 -1.50	1.5 - 1.86	PRL 86, 1702 (2001)
	P ⁰	0.8 - 3.2	1.6 - 2.7	PRC 90, 035202 (2014)
	σ _U , σ _{LT} , σ _{TT} , σ _{LT'}	1.4 - 3.9	1.6 - 2.6	PRC 87, 025204 (2013)
ep> eK⁺∆	P' _x , P'z	0.7 - 5.4	1.6 - 2.6	PRC 79, 065205 (2009)
	σ _U , σ _{LT} , σ _{TT,} σ _{LT'}	0.5 - 2.8	1.6 - 2.4	PRC 75, 045203 (2007)
	P' _x , P' _z	0.3 - 1.5	1.6 - 2.15	PRL 90, 131804 (2003)
	σ _U , σ _{LT} , σ _{TT} , σ _{LT'}	1.4 - 3.9	1.6 - 2.6	PRC 87, 025204 (2013)
ep> eK⁺Σ⁰	P' _x , P'z	0.7 - 5.4	1.6 - 2.6	PRC 79, 065205 (2009)
	σ _U , σ _{LT} , σ _{TT,} σ _{LT'}	0.5 - 2.8	1.6 - 2.4	PRC 75, 045203 (2007)
ер> ерш	σ _U , σ _{LT} , σ _{TT}	1.725 - 4.85	1.85 - 2.77	EPJA 24, 445 (2005)
ер> ер р⁰	σ _U	1.6 - 5.6	1.8 - 2.8	EPJA 39, 5 (2009)
	σլ/σ _T	1.5 - 3.0	1.85 - 2.2	PLB 605, 256 (2005)
ер> ерф	dơ/dt	1.4 - 3.8	2.0 - 3.0	PRC 78, 025210 (2008)
	do/dt'	0.7 - 2.2	2.0 - 2.6	PRC 63, 059901 (2001)

CLAS: 1997 - 2012

CLAS Physics Data Base http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi

Daniel S. Carman

Jefferson Lab

N*2017 Workshop - Aug. 20-23, 2017

Page 5

Extraction of Electrocouplings

Reaction Channel	N*, Δ * States	Q ² ranges of γ _v NN* Electrocouplings (GeV ²)			
π ⁰ p, π⁺n	∆(1232)3/2⁺	0.16 - 6.0			
	N(1440)1/2 ⁺ , N(1520)3/2 ⁻ , N(1535)1/2 ⁻	0.30 - 4.16			
π⁺n	N(1675)5/2, N(1680)5/2+, N(1710)1/2+	1.6 - 4.5			
η p	N(1535)1/2-	0.2 - 2.9			
π⁺π⁻ p	N(1440)1/2 ⁺ , N(1520)3/2 ⁻	0.25 - 1.5			
Δ(1620)1/2⁻, N(1650)1/2⁻, N(1680)5/2⁺, 0.5 - 1.5 Δ(1700)3/2⁻, N(1720)3/2⁺, N'(1720)3/2⁺					
http://userweb.jlab.org/~mokeev/resonance_electrocouplings					

Analysis codes for single and double PS meson production:

- Unitary Isobar Model (UIM)
- for πN and ηN
- Fixed-t dispersion relations (DR)
- Data-driven reaction model for $\pi^+\pi^-N$ (JM09, JM16)

[Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)] [Mokeev, FBS 57, 909 (2016)]

Total Cross Sections

First Resonance Region

Low-Lying N* States

Electrocouplings reveal different interplay between quark core and M-B cloud

- Important to study different N* states vs. distance scale

- Good agreement of the extracted N* electrocouplings from N π and N $\pi\pi$
 - Compelling evidence for the reliability of the results

Jefferson Lab

- Channels have very different mechanisms for the non-resonant background

Structure studies of low-lying N* states have advanced due to agreement of results from independent analyses of the N π and N $\pi\pi$ final states

Higher-Lying N* States

N $\pi\pi$ channel gave first electrocoupling results on higher-lying states up to 1.7 GeV: $\Delta(1620)1/2^{-}$, N(1650)1/2⁻, $\Delta(1700)3/2^{-}$, N(1720)3/2⁺ Note: Most high-lying N* states (M > 1.6 GeV) decay mainly to $N\pi\pi$ with much smaller strength to $N\pi$ 0 20 N(1720)3/2+ △(1620)1/2-△(1700)3/2-120 10 -10 1.61-1.71 GeV 100 1.66-1.76 GeV 1.46-1.56 GeV -20 1.71-1.81 GeV 1.56-1.66 GeV 80 1.61-1.71 GeV -30 60 -30 -40 40 -40 -50 20 -60 -50 A_{3/2} -70 -80 -60 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1.2 1.4 0 1.2 1.4 0 0 1 1 $Q^2 GeV^2$ $O^2 GeV^2$ $O^2 GeV^2$ [Mokeev, Aznauryan, Int. J. Mod. Phys. Conf. Ser. 26, 1460080 (2014)] Data from the KY channels is critical to provide an independent

extraction of the electrocoupling amplitudes for the high-lying N* states

Jefferson Lab

$N^*, \Delta^* \longrightarrow KY Landscape$

				Id						Nic			
1	$N^{\bigstar} \rightarrow$	КУ			$\star \to K\Sigma$	Σ		N* →	КУ		Δ	$* \rightarrow K\Sigma$	Ξ
State	Rating	BR % (ΚΛ)	BR % (KΣ)	State	Rating	BR % (KΣ)	State	Rating	BR % (ΚΛ)	BR % (KΣ)	State	Rating	BR % (ΚΣ)
N*(1650)	****	3–11	-	∆*(1700)	****	-	N*(1650)	****	10±5	-	∆*(1620)	****	-
N*(1675)	****	< 1	-	∆*(1750)	*	-	N*(1675)	****	-	-	∆*(1700)	****	-
N*(1680)	****	-	-	∆*(1900)	**	-	N*(1680)	****	-	-	∆*(1750)	*	-
(1000)							N*(1700)	***	-	-	∆*(1900)	**	5±3
N*(1700)	***	< 3	-	∆*(1905)	****	-	N*(1710)	***	23±7	-	∆*(1905)	****	-
N*(1710)	***	5–25	-	∆*(1910)	****	9	N*(1720)	****	-	-	∆*(1910)	****	9±5
N*(1720)	***	1–15	-	∆*(1920)	***	2.1	N*(1875)	***	4±2	15±8	∆*(1920)	***	4±2
N*(1875)	***	-	-	∆*(1930)	***	-	N*(1880)	**	2±1	17±7	∆*(1930)	***	-
N*(1900)	***	0-10	5	∆*(1940)	**	-	N*(1895)	**	18±5	13±7	∆*(1940)	***	-
N*(1990)	**	-	-	∆*(1950)	****	-	N*(1900)	**	16±5	5±2	∆*(1950)	****	0.4±0.1
	**			.*(0000)	4 4		N*(1990)	**	-	-	∆*(2000)	**	-
N^(2000)	0.0	-	-	Δ*(2000)	**	-	N*(2000)	**	-	-			

[Beringer et al. (PDG), PRD 86, 010001 (2012)]

Jefferson Lab

[Anisovich et al., EPJ A 48, 15 (2012)]

N*2017 Workshop - Aug. 20-23, 2017

Evidence for New N* in KY Final States

State N(mass)J ^P	PDG pre-2010	PDG 2016	KΛ	ΚΣ	Νγ
N(1710)1/2+	***	****	****	**	****
N(1880)1/2+		**	**		**
N(1895)1/2 ⁻		**	**	*	**
N(1900)3/2+	**	***	***	**	***
N(1875)3/2 ⁻		***	***	**	***
N(2150)3/2 ⁻		**	**		**
N(2000)5/2+	*	**	**	*	**
N(2060)5/2 ⁻		**		**	**

Extend these studies to electroproduction and to higher masses

Jefferson Lab

K⁺∧ Structure Functions

CIQS

$K^+\Sigma^0$ Structure Functions

clas

Recoil Polarization

Transferred Polarization $\vec{e}p \rightarrow e'K^{\dagger}\vec{\Lambda}$ close

KY Reaction Model

There is an *urgent* need for KY reaction models - first for lower Q^2 data from CLAS and then for higher Q^2 data from CLAS12

Jefferson Lab

Work is underway to further develop the Ghent Regge plus Resonance (RPR) model:

- Update RPR electrocoupling parameters
- Refit model to CLAS γp and $\gamma_{v} p$ data: $W \rightarrow 2.6 \ GeV, \ Q^2 \rightarrow 4 \ GeV^2$

• Extend model to CLAS12 kinematics:

 $W \rightarrow 3 \ GeV, \ Q^2 \rightarrow 12 \ GeV^2$

[DeCruz et al., PRC 86, 015212 (2012)]

Ultimately need analysis within global multi-channel electroproduction model (e.g. ANL-Osaka, Bonn-Gatchina, JPAC@JLab) - getting underway now

CLAS12 Spectrometer

Physics program begins this year	۱L
	A
	l r
	θ
	φ
	π
	k
	π
All a series of the series of	r
	L

CLAS12 Specifications						
	Forward	Central				
Angular coverage	5° – 35°	35° – 135°				
Momentum resolution	δ p/p < 1%	δ p/p < 5%				
θ resolution	1 mrad	5 – 10 mrad				
$\boldsymbol{\phi}$ resolution	1 mrad/sin θ	$5 \text{ mrad/sin}\theta$				
PID:						
π/K	4σ to 2.8 GeV	3σ to 0.6 GeV				
K/p	4σ to 4.8 GeV	3σ to 1.0 GeV				
π/p	4σ to 5.4 GeV	3σ to 1.2 GeV				
Calorimeter resolution	σ _E ~ 0.1√E					
Luminosity	10 ³⁵ c	m ⁻² s ⁻¹				

CLAS12 N* Program

E12-09-003	Nucleon Resonance Studies with CLAS12
E12-06-108A	KY Electroproduction with CLAS12
E12-16-010A	N* Studies Via KY Electroproduction at 6.6 and 8.8 GeV

Solution Measure exclusive electroproduction of N π , N η , N $\pi\pi$, KY final states from an unpolarized proton target with longitudinally polarized electron beam

 $E_b = 6.6, 8.8, 11 \text{ GeV}, Q^2 = 2 \rightarrow 12 \text{ GeV}^2, W \rightarrow 3.0 \text{ GeV}, \cos \theta_m^* = [-1:1]$

■ Study spectrum and structure of all prominent N* states vs. Q²

📩 Jefferson

Daniel S. Carman

- A unique opportunity to explore the nature of confinement that is responsible for the dominant part of N* masses and the emergence of N* states from QCD

- **The independent analysis of** $N\pi$, $N\eta$, $N\pi\pi$, and KY allows for "model independent" extraction of the electrocoupling amplitudes
 - At moderate Q² (1 5 GeV²), the new CLAS12 electroproduction data will be of comparable statistical quality as existing CLAS photoproduction data

N* Spectrum and Structure

Study higher-lying states in N* spectrum:

- important precision tests to confirm signals of new baryon states observed in KY photoproduction
- require consistency between photo- and electroproduction data

Understand the effect of N* structure from M-B cloud:

 use transition regime to explore the emergence of the external M-B cloud from the core of confined guarks and gluons

Access di-quark correlations in N* structure:

- important part of N* structure and $\gamma_{v}NN^{*}$ transition amplitudes
- determined by dressed quark mass function through DCSB
- dependent on N* quantum numbers
- sizable for $Q^2 < 5 \text{ GeV}^2$; reduced contributions from *M-B* cloud in range from $Q^2 = 2 \rightarrow 5 \text{ GeV}^2$

Exploring Hadron Mass Generation

Dressed quark mass function:

- DSE calculations of FFs for N* states can test the relevance of dressed quarks with dynamically generated masses
- The mass function can be "measured" as it influences and determines the electrocoupling amplitudes

Open questions in Standard Model:

- Data spanning the transition region from low to high Q² can help to map out the momentum-dependent dressed quark mass
- These dynamical contributions account for more than 98% of the dressed quark mass
- Help to address the essence of confinement, mass generation, and its distribution within hadrons

Concluding Remarks

- The study of N* states is one of the key foundations of the Hall B physics program with CLAS:
 - > CLAS has provided a huge amount of precision data (cross sections and pol. observables) for the $N\pi$, $N\eta$, KY, and $N\pi\pi$ channels Q^2 from 0 to 4.5 GeV²
 - Electrocouplings of most N* states < 1.7 GeV have been extracted from these data for the first time for the non-strange M-B final states
 - Analysis tools to extract the structure information from the KY experimental observables are sorely needed

The CLAS12 N* program will extend these studies for $2 < Q^2 < 12$ GeV²:

- These studies will allow for insight into the strong interaction dynamics of dressed quarks and their confinement in baryons over a broad Q² range
- These data will address the most challenging problems of the SM on the nature of hadron mass, confinement, and the emergence of N* states