

Evaluating Polarization Data

NSTAR 2017

D.G. Ireland

August 20-23, 2017

We have a lot of data!

Introduction

How do we make connections to understanding physics?

What if the data is junk?

Pseudoscalar Meson Photoproduction

We have gone way beyond measuring cross-sections!

Pseudoscalar Meson Photoproduction - KA example

Transversity amplitudes b_j (j = 1, 2, 3, 4): quantization axis perpendicular to reaction plane and the linear photon polarizations J_x and J_y

$$\begin{array}{rcl} b_1 & = & {}_{y}\langle +|J_{y}|+\rangle_{y}, \\ b_2 & = & {}_{y}\langle -|J_{y}|-\rangle_{y}, \\ b_3 & = & {}_{y}\langle +|J_{x}|-\rangle_{y}, \\ b_4 & = & {}_{y}\langle -|J_{x}|+\rangle_{y}. \end{array}$$

Normalized transversity amplitudes (NTA) a_j (j = 1, 2, 3, 4)

$$a_j \equiv rac{b_j}{\sqrt{|b_1|^2 + |b_2|^2 + |b_3|^2 + |b_4|^2}},$$

The a_j are functions of W (hadronic mass) and $\theta_{c.m.}$ (scattering angle)

Type	Observable	Transversity representation	Helicity representation
S	σ	$ a_1 ^2 + a_2 ^2 + a_3 ^2 + a_4 ^2$	$ h_1 ^2 + h_2 ^2 + h_3 ^2 + h_4 ^2$
	Σ	$ a_1 ^2 + a_2 ^2 - a_3 ^2 - a_4 ^2$	$2\Re(h_1h_4^* - h_2h_3^*)$
	P	$ a_1 ^2 - a_2 ^2 + a_3 ^2 - a_4 ^2$	$2\Im(h_1h_3^* + h_2h_4^*)$
	T	$ a_1 ^2 - a_2 ^2 - a_3 ^2 + a_4 ^2$	$2\Im(h_1h_3^* + h_2h_4^*)$
BT	E	$2\Re(a_1a_3^* + a_2a_4^*)$	$ h_1 ^2 - h_2 ^2 + h_3 ^2 - h_4 ^2$
	F	$2\Im(a_1a_3^* - a_2a_4^*)$	$2\Re(h_1h_2^* + h_3h_4^*)$
	G	$2\Im(a_1a_3^* + a_2a_4^*)$	$-2\Im(h_1h_4^* + h_2h_3^*)$
	H	$-2\Re(a_1a_3^* - a_2a_4^*)$	$-2\Im(h_1h_3^* - h_2h_4^*)$
BR	C_x	$-2\Im(a_1a_4^* - a_2a_3^*)$	$2\Re(h_1h_3^* + h_2h_4^*)$
	C_z	$2\Re(a_1a_4^* + a_2a_3^*)$	$ h_1 ^2 + h_2 ^2 - h_3 ^2 - h_4 ^2$
	O_x	$2\Re(a_1a_4^* - a_2a_3^*)$	$-2\Im(h_1h_2^* - h_3h_4^*)$
	O_z	$2\Im(a_1a_4^* + a_2a_3^*)$	$2\Im(h_1h_4^* - h_2h_3^*)$
TR	T_x	$2\Re(a_1a_2^* - a_3a_4^*)$	$-2\Re(h_1h_4^* + h_2h_3^*)$
	T_z	$2\Im(a_1a_2^* - a_3a_4^*)$	$-2\Re(h_1h_2^* - h_3h_4^*)$
	L_x	$-2\Im(a_1a_2^*+a_3a_4^*)$	$2\Re(h_1h_3^* - h_2h_4^*)$
	L_z	$2\Re(a_1a_2^* + a_3a_4^*)$	$ h_1 ^2 - h_2 ^2 - h_3 ^2 + h_4 ^2$

Extracting Observables

$$\begin{split} \sigma_{Total} &= \sigma_0 \{ 1 - P_L^{\gamma} P_T^T P_y^R \sin(\phi) \cos(2\phi) + \Sigma(-P_L^{\gamma} \cos(2\phi) + P_T^T P_y^R \sin(\phi)) \\ &+ T(P_T^T \sin(\phi) - P_L^{\gamma} P_y^R \cos(2\phi)) + P(P_y^R - P_L^{\gamma} P_T^T \sin(\phi) \cos(2\phi)) \\ &+ E(-P_C^{\gamma} P_L^T + P_L^{\gamma} P_T^T P_y^R \cos(\phi) \sin(2\phi)) + F(P_C^{\gamma} P_T^T \cos(\phi) + P_L^{\gamma} P_L^T P_y^R \sin(2\phi)) \\ &- G(P_L^{\gamma} P_L^T \sin(2\phi) + P_C^{\gamma} P_T^T P_y^R \cos(\phi)) - H(P_L^{\gamma} P_T^T \cos(\phi) \sin(2\phi) - P_C^{\gamma} P_L^T P_y^R) \\ &- C_x (P_C^{\gamma} P_x^R - P_L^{\gamma} P_T^T P_z^R \sin(\phi) \sin(2\phi)) - C_z (P_C^{\gamma} P_z^R + P_L^{\gamma} P_T^T P_x^R \sin(\phi) \sin(2\phi)) \\ &- O_x (P_L^{\gamma} P_x^R \sin(2\phi) + P_C^{\gamma} P_T^T P_z^R \sin(\phi)) - O_z (P_L^{\gamma} P_z^R \sin(2\phi) - P_C^{\gamma} P_T^T P_x^R \sin(\phi)) \\ &+ L_x (P_L^T P_x^R + P_L^{\gamma} P_T^T P_z^R \cos(\phi) \cos(2\phi)) + L_z (P_L^T P_z^R \cos(\phi) + P_L^{\gamma} P_x^T \cos(\phi) \cos(2\phi)) \\ &+ T_x (P_T^T P_x^R \cos(\phi) - P_L^{\gamma} P_L^T P_z^R \cos(2\phi)) + T_z (P_T^T P_z^R \cos(\phi) + P_L^{\gamma} P_x^R \cos(2\phi)) \} \end{split}$$

Cross section as a function of beam $(P_{C,L}^{\gamma})$, target $(P_{L,T}^{T})$ and recoil $(P_{x,y,z}^{R})$ polarization

The condition relating the normalized transversity amplitudes:

 $|a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2 = 1$

defines a unit sphere in \mathbb{R}^8 .

- Can we map PDFs in observable space to PDF in amplitude space?
- If so, can we project amplitude PDF back into a joint observable PDF?

Test Case: π -N Scattering

Two amplitudes, four observables:

$$\frac{d\sigma}{d\Omega} = |f|^2 + |g|^2$$
$$A = |f|^2 - |g|^2$$
$$R = -2 \operatorname{Re}(fg^*)$$
$$P = 2 \operatorname{Im}(fg^*)$$

Normalize:

$$|f|^2 + |g|^2 = 1$$

Constraint:

$$A^2 + R^2 + P^2 = 1$$

 $\pi^- p$ (left) and $\pi^+ p$ (right) polarization observables

Measure energy $E \pm \delta E$ and momentum $p \pm \delta p$, identify particle type Calculate measured mass:

 $m^2 = E^2 - p^2$

Example

- Measured energy: $415\pm10~\text{MeV}$
- Measured momentum: $400\pm 5~\text{MeV/c}$

Measure energy $E \pm \delta E$ and momentum $p \pm \delta p$, identify particle type Calculate measured mass:

 $m^2 = E^2 - p^2$

Example

- Measured energy: $415\pm10~\text{MeV}$
- Measured momentum: $400\pm 5~\text{MeV/c}$

- Measured mass: $110\pm42~\text{MeV/c}^2$
- Identify particle as pion
- \Rightarrow Adjusted energy: 421 \pm 10 MeV
- \Rightarrow Adjusted momentum: 397 \pm 5 MeV/c

Prior PDF for Amplitudes

Prior PDF for Observables to be Measured

16

Prior PDF for Unmeasured Observables

Data from One $W - \theta$ Bin

Observable	Value	Uncertainty
Σ	0.222	0.037
R	-0.419	0.041
Т	-0.979	0.095
O_{x}	-0.962	0.099
0 _z	-0.040	0.099

- Sample amplitudes $\{a_i\}$; i = 1, 2, 3, 4
- Calculate observables $o_j = f_j(a_i); \quad j = 1,...16$
- Evaluate probability for each observable, based on ratio of gaussian PDF from "raw" data and (quadratic) prior PDF
- Use Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings MCMC Algorithm

• Has detailed balance property:

$$P(\Phi' \mid \Phi)P(\Phi) = P(\Phi \mid \Phi')P(\Phi')$$

- All points in parameter space are reachable
- Sample of points can be shown to approach target distribution in the large number limit.

MCMC Chain

Posterior PDF for Amplitudes

22

Posterior PDF for Measured Observables

Posterior PDF for Unmeasured Observables

CLAS $\gamma + p \rightarrow K^+ \Lambda$ **Coverage**

25

Comparison of Raw and New (Target Asymmetry)

Data from unconstrained Maximum Likelihood fit.

Comparison of Raw and New (Target Asymmetry)

Overlay newly evaluated data.

Comparison of Raw and New

28

The algebra of the transversity/helicity amplitudes leads to the inequalities:

 $|T - P| \leq 1 - \Sigma$

and

 $|T + P| \le 1 + \Sigma$

Tetrahedral Inequality

- Take data points from unconstrained fits
- Use MCMC to sample PDF in amplitude space, given measured data
- Project sampled PDF onto observable space
- Resulting PDF in observable space gives "new" consistent data

Question: How to cope with different experiments?

Possible answer: Gaussian processes for interpolation

Question: How to cope with different experiments?

Work in progress...

(ongoing collaboration with computer scientists)

- Data consisting of several observables from the same channel can and should be made consistent.
- Key tools:
 - Algebra connecting observables to amplitudes
 - Evaluate full PDF (Markov Chain Monte Carlo)
- Need to be able to use independent experimental results.
- Resulting data will remove the need for arbitrary fudge factors in fits to theoretical calculations.