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Context

The talks of NSTAR 2017 have provided rich theoretical, 
experimental, and historical context.

QCD unified crucial aspects of disparate lines of evidence:
●     quarks and color (Gell-Mann),
●     partons and scaling (SLAC experiments), and
●     QFT and renormalization,

BUT even today critically lacks
●     the simplest bound-state solutions and
●     a clear connection to its own dynamical properties.

So, what do we do?
●     Study physical objects that encode QCD dynamics.
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Probing the proton with ω

ep e'ωop' γ*p ωop' π+πoπ-p'
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Probing the proton with ω 

● ω is selective,
● isoscalar so couples only to 

I = ½ excited states
● decays into 3π so filters out 

lower lying resonances
● might couple more strongly to 

states previously undetected in 
π production, and

● could corroborate available γ*pN* 
information in exclusive channel 
with different background.
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Probing the proton with ω 

● Sensitive to N(2000) 5/2+ ?

M. Williams et al., Partial wave analysis of the reaction γp → pω 
and the search for nucleon resonances, Phys. Rev. C 80 (2009), 
065209.

arXiv:0908.2911v3
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Kinematics and Observables
16 kinematic d.o.f.
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Kinematics and observables

Measured ep scattering exclusive cross-section is
reduced to γ*p→ωp exclusive cross-section:

and decomposed into response functions:

which connects back to binned experimental data:
i = label of 4D bin
N = background-subtracted yield
B = 3π decay branching ratio
L = integrated luminosity
Γ = virtual photon flux
R = radiative corrections
η = represents effect of all efficiency 
and acceptance factors
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The CLAS Detector
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Experimental conditions
● JLab CEBAF and CLAS detector
● E1F (E16) run periods
● 5-cm unpolarized liquid H target
● target offset by -25 cm (-5 cm)
● 5.5-GeV (5.8-GeV) electrons
● 21-fb-1 (28-fb-1) integrated luminosity
● data acquisition triggered by coincident, 

same-sector hits in Electromagnetic (EC) 
Calorimeter and Čerenkov Counter CC)
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Run and Luminosity Block Quality
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Electron Identification
● Candidate electron criteria

● Same-sector, coincident hits in 
CC, EC, DC, and SC

● Geometrically consistent, 
negative particle track in DC

● EC-related cuts
● E

EC
/p within 3σ of the EC’s 

sampling fraction
● E

in
 greater than that of 

minimum-ionizing particles
● CC-related cuts

● Eliminate low current noise 
and effect of fast hadrons

● Determine cut efficiency
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Hadron Identification
● Candidate criteria

● Same-sector, coincident hits in 
DC and SC

● Geometrically consistent, 
positive particle track in DC

● Event time correction
● Time difference cut

● Compare time-of-flight to time 
predicted by DC-determined 
momentum with mass 
assumption.

● 3σ cut around resulting 
distribution
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Hadron Identification

3σ proton id cut

experiment, sector 1

● Candidate criteria
● Same-sector, coincident hits in 

DC and SC
● Geometrically consistent, 

positive particle track in DC
● Event time correction
● Time difference cut

● Compare time-of-flight to time 
predicted by DC-determined 
momentum with mass 
assumption.

● 3σ cut around resulting 
distribution
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Determination of Yield

● Foundational skim
● run is good
● luminosity block is good
● first particle is electron
● exactly 1 proton
● exactly 1 positive pion
● up to 1 negative pion
● no other charged particles

● Kinematic cuts
● MM

x
(epX) near ω mass

● Mm
x
(epπ+X) consistent with 3π 

channel
● Background subtraction

● angular distribution of 
background sidebands
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Simulation and Acceptance

● Probability to detect/reconstruct
● geometric acceptance
● detector efficiencies
● reconstruction efficiencies
● bin migration effects

● GENEV – physics generator
● GSIM – detector simulation
● GPP – additional resolution smearing
● Same reconstruction and cuts as 
experiment
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Simulation and Acceptance

● Probability to detect/reconstruct
● geometric acceptance
● detector efficiencies
● reconstruction efficiencies
● bin migration effects

● GENEV – physics generator
● GSIM – detector simulation
● GPP – addition resolution smearing
● Same reconstruction and cuts as 
experiment

Events thrown in 82,620 kinematic bins
Events reconstructed in 67,747 kinematic bins

ACCEPTANCE = reconstructed divided by thrown
HOLES = bins WITH thrown
                  but WITHOUT reconstructed 
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Other correction factors

● Radiative correction (Mo and Tsai)
● Acceptance corrections account for 

radiative tail in ω mass peak.
● Bin migration in W and Q2 treated 

separately.
● E1F reconstruction inefficiency

● Raw data requires recooking.
● Absolute efficiency factor of 0.7 

based on recooking of one run
● Overall reconstruction efficiency

● GSIM-CLAS efficiency incongruence

Radiative bin migration
correction factor

Frequency of 
event-level 
“overall 
reconstruction 
efficiency” 
values 
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Results

1. Differential cross sections in more than 60,000 kinematic bins

2. Unpolarized cross section, σ
o
, and interference terms, σ

TT
, and σ

LT
 

3. Response functions, , , and
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Highlights
● Response functions R

T
 + εR

L
, R

TT
, and R

TL
 were extracted in the kinematic range 

covered by W  = [1.72, 2.60) GeV and Q2 = [1.85, 5.15) GeV2.

● Combined analysis of E1F and E16 run periods presents the largest set of 
results for ω electroproduction in the resonance region to date.  Far more 
structure in W is apparent than in prior results, due to increased precision 
afforded by higher statistics.

● Most precise angular information on ω electroproduction in the virtual photon 
domain.  Intended to support single- and coupled-channel analyses that aim to 
probe the content and dynamics of hadrons.

● Cross-sections are relatively flat in θ up to W = 2.1 GeV.  Only at higher 
energies does the onset of forward-angle dominance suggestive of t-channel 
processes occur.

● Unpolarized cross-sections are inconsistent with previously published E16 
results at the highest common Q2 values.

Thank you!
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