NSTAR2017 – The 11th International Workshop on the Physics of Excited Nucleons 23 August 2017

Investigation of Exclusive π⁺π⁻ Electroproduction off the Proton Bound in the Deuteron in the Resonance Region with CLAS

Speaker: Iuliia Skorodumina

(University of South Carolina)

CLAS Deuteron Target Experiment

(e1e run, E_{beam} = 2.039 GeV)

Final Goals

- To extract quasi-free integrated and single-differential cross sections of the reaction $\gamma_v p(n) \rightarrow p'(n')\pi^+ \pi^-$ for *W*: [1.3, 1.825] GeV, *Q*²: [0.45, 1] GeV²
- To compare them with the cross sections of the analogous reaction on the free proton [1]

$$\frac{d^7\sigma_e}{dWdQ^2d^5\tau} = \Gamma_v \frac{d^5\sigma_v}{d^5\tau}$$

$$d^{5}\tau = dM_{\pi+p}dM_{\pi+\pi}-d\Omega_{\pi}-d\alpha_{[\pi-p][\pi+p']}$$

What is different from the free proton target experiment?

- 1) Considerably more complex effects of initial and final state interactions due to the presence of additional nucleon → lead to difficulties in exclusive event selection
- 2) Fermi motion of the target proton has the following consequences:
 - Smearing of kinematical quantities (*W*, missing mass, etc.) if not all final particles are registered
 - Different procedure of lab-to-cms transformation
 - Moving proton experiment with fixed beam energy is equivalent to that on the proton at rest with varying beam energy
- 3) Off-shellness of the target proton
- 4) Possible modification of reaction amplitudes

What is different from the free proton target experiment?

- 1) Considerably more complex effects of initial and final state interactions due to the presence of additional nucleon → lead to difficulties in exclusive event selection
- 2) Fermi motion of the target proton has the following consequences:
 - Smearing of kinematical quantities (*W*, missing mass, etc.) if not all final particles are registered
 - Different procedure of lab-to-cms transformation
 - Moving proton experiment with fixed beam energy is equivalent to that on the proton at rest with varying beam energy
- 3) Off-shellness of the target proton
- 4) Possible modification of reaction amplitudes

Event Generation with TWOPEG

- TWOPEG [2] is new double-pion event generator developed in the framework of the preparation of Hybrid Baryon Search proposal (approved by PAC44)
- Fermi motion was implemented according to the Bonn potential [3]
- In this analysis TWOPEG is successfully used for the first time for the efficiency evaluation

Generated momentum of the target proton

$$P_p = \left| \overrightarrow{P_e} - \overrightarrow{P_{e'}} - \overrightarrow{P_{p'}} - \overrightarrow{P_{\pi^+}} - \overrightarrow{P_{\pi^-}} \right|$$

where \overrightarrow{P}_i are the three-momenta of the particle *i*.

[2] CLAS12-NOTE-2017-001 (arXiv:1703.08081)

[3] R.Machleidt, K. Holinde, and C. Elster, Phys. Rept., vol. 149, pp. 1-89, 1987

2π Event Selection

Cuts	Data	Simulation
Fiducial	yes	yes
EC-cut	yes	yes
CC-cut	yes	no/yes
β vs. p	yes	yes
θ vs. p	yes	yes
Electron momentum correction	yes	no
Proton energy loss correction	yes	yes
Exclusivity cut	yes	yes

2π Event Selection

Cuts	Data	Simulation
Fiducial	yes	yes
EC-cut Electron identification	yes	yes
CC-cut	yes	no/yes
β vs. p \longrightarrow Hadron identification	yes	yes
θ vs. p	yes	yes
Electron momentum correction	yes	no
Proton energy loss correction	yes	yes
Exclusivity cut	yes	yes

Topologies of $\gamma_v p(n) \rightarrow p'(n')\pi^+ \pi^-$

- All final particles are registered (10%) fully exclusive topology
- π is missing (70%)

- π^+ is missing (10%) \rightarrow misidentification with γ_v $n(p) \rightarrow p'(n')\pi^-$ and γ_v $n(p) \rightarrow p'(n')\pi^-\pi^0$ channels
- p is missing (10%) \rightarrow misidentification with γ_v n(p) \rightarrow n'(p') π^+ π^- channel

Corrections to the Cross Sections

- *Correction due to FSI*
- Empty target subtraction
- Correction due to the filling cells with zero acceptance from the EG
- Radiative correction
- Correction due to Fermi motion of the target proton

Final State Interactions

 Interaction of final hadrons with each other → rather small effect as it is known from 2pi production off the free proton

 Interaction of final hadrons with the additional nucleon (neutron) = rescattering under the influence of the strong interaction via resonant and/or non-resonant mechanisms → noticeable effect

Quasi-Free Regime and FSI for $p(n)\pi^+\pi^-$ Final State

FSI for $p(n)\pi^+\pi^-$ Final State

FSI strongly depend on:

- Invariant mass of final hadron system (*W*)
- Scattering angles of final hadrons → FSI are topology dependent!

$$M_{X[\pi^-]}^2 = [P_e^{\mu} + P_p^{\mu} - P_{e'}^{\mu} - P_{p'}^{\mu} - P_{\pi^+}^{\mu}]^2$$
, where P_i^{μ} are the four-momenta of the particle *i*.

Black curve – data, **Blue curve** – simulation (FSI not included)

Selection of Quasi-Free Events in <u>Fully Exclusive Topology</u>

$$P_X = |\overrightarrow{P}_e - \overrightarrow{P}_{e'} - \overrightarrow{P}_{p'} - \overrightarrow{P}_{\pi^+} - \overrightarrow{P}_{\pi^-}|,$$

where \overrightarrow{P}_i are the three-momenta of the particle *i*.

Cut P_{x} = 0.2 GeV selects quasi-free events.

After the cut.

Black curve – data, **Blue curve** – simulation (FSI not included)

Effective FSI Correction for <u>π</u> Missing Topology

$$\frac{d^7 \sigma_{corrected}}{dW dQ^2 d^5 \tau} = \frac{d^7 \sigma_{not \ corrected}}{dW dQ^2 d^5 \tau} \times F_{fsi}(\Delta W)$$

$$F_{fsi}(\Delta W) = \frac{Area\ under\ green}{Area\ under\ red}$$

Black histogram – experimental data, **Blue histogram** – simulation, **Purple histogram** – their difference. **Red curve** – fit to the data, **Green curve** – fit to the simulation, **Purple curve** – fit to the difference.

Invariant Mass of Final Hadronic System

Proton at rest

$$P_p^{at rest} = (0, 0, 0, m_p)$$

$$W_{true} = \sqrt{(P_p^{at \, rest} + P_{\gamma_v})^2}$$

Moving proton

$$P_p^{moving} = (p_{fx}, p_{fy}, p_{fz}, \sqrt{m_p^2 + p_f^2})$$

$$W_{true} = \sqrt{(P_p^{moving} + P_{\gamma_v})^2}$$

Invariant Mass of Final Hadronic System

Proton at rest

$$P_p^{at rest} = (0, 0, 0, m_p)$$

$$W_{true} = \sqrt{(P_p^{at \, rest} + P_{\gamma_v})^2}$$

Moving proton

$$P_p^{moving} = (p_{fx}, p_{fy}, p_{fz}, \sqrt{m_p^2 + p_f^2})$$

$$W_{true} = \sqrt{(P_p^{\ moving} + P_{\gamma_v})^2}$$

 P_f is unknown if π is missing

In target-at-rest assumption

$$W_{fsm} = \sqrt{(P_p^{at \, rest} + P_{\gamma_v})^2}$$

Correcting the Effects of Fermi Motion on the Cross Sections

$$\frac{d^7 \sigma_{corrected}}{dW_{true} dQ^2 d^5 \tau} = \frac{d^7 \sigma_{not\ corrected}}{dW_{fsm} dQ^2 d^5 \tau} \times F_{corr}(\Delta W, \Delta Q^2, \Delta \tau)$$

$$F_{corr}(\Delta W, \Delta Q^2, \Delta \tau) =$$

$$\frac{N_{nofermi}(\Delta W, \Delta Q^2, \Delta \tau)}{N_{fermi}(\Delta W, \Delta Q^2, \Delta \tau)}$$

 $N_{\tiny{nofermi}}$ – from TWOPEG on free proton $N_{\tiny{fermi}}$ – from TWOPEG on moving proton

Comparison of the Integral Cross Section with and without Fermi Correction (preliminary)

Red symbols – experimental integral cross section *with* Fermi correction

Blue symbols – experimental integral cross section *without* Fermi correction

Integrated Cross Sections (Preliminary)

Differential Cross Sections (Preliminary)

 $W = 1.6375 \text{ GeV}, Q^2 = 0.475 \text{ GeV}^2$

Red symbols – empty cells are NOT filled **Blue symbols** – empty cells are filled **Black symbols** – Fermi correction is applied **Green curve** – from EG off the free proton 21

Comparison with Free Proton Cross Sections

Black symbols – *free* proton cross sections (e1e, E_{beam} = 2.039 GeV) [1], error bars show both *statistical* and *systematical* uncertainties

Red symbols – quasi-free cross sections on proton in deuteron (e1e, E_{beam} = 2.039 GeV), error bars show *statistical* uncertainty only

Blue symbols – their ratio

Conclusion

- Integral and single-differential cross sections of the reaction $\gamma_v p(n) \to p'(n')\pi^+\pi^-$ in quasi-free regime are extracted for the first time
- The procedure of correcting the cross section distortion due to the Fermi motion is developed and applied
- The procedure of selecting events in quasi-free kinematics is developed
- TWOPEG was tested and for the first time used for the efficiency evaluation

Thank you!

2π Kinematics

Lab-to-CMS Transformation

Photoproduction off the free proton

Electroproduction off the free proton

$$\overrightarrow{\beta} = \left(0, 0, \frac{|\overrightarrow{q_{\gamma}}|}{E_{\gamma} + m_p}\right)$$

CMS

Electroproduction off the moving proton

 y_{lab}

Fermi Correction

 $W = 1.3125 \text{ GeV}, Q^2 = 0.475 \text{ GeV}^2$

Red symbols – from EG for the moving proton **Green symbols** – from EG for the free proton

Fermi Correction

Red symbols – from EG for the moving proton **Green symbols** – from EG for the free proton