Measurements of the Nucleon Spin-Structure Functions in and Above the Resonance Region for the Hall-B EG1Experiment at Jefferson Laboratory Robert Fersch Christopher Newport University Jefferson Laboratory (CLAS Collaboration) #### Structure of the Nucleon #### **Transversity δq** 3 d.o.f. completely describe the nucleon at leading twist when $k_T = 0$ #### Structure of the Nucleon #### Transversity δq 3 d.o.f. completely describe the nucleon at leading twist when $k_T = 0$ ## Helicity: $\Delta q = q^+ - q^-$ Incident electron couples to quarks of opposite longitudinal spin Structure function $g_1(x,Q^2) \sim \sigma_{1/2} - \sigma_{3/2}$ Requires longitudinally polarized beam and target ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) # CEBAF Large Acceptance Spectrometer (Hall-B) at Jefferson Lab (~70%) polarized electron beam in energies up to 6 GeV ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) # CEBAF Large Acceptance Spectrometer (Hall-B) at Jefferson Lab **Drift Chambers (momentum reconstruction)** Scintillation Counters (timeof-flight, PID) Cherenkov Counters and Electromagnetic Calorimeters (separation of electrons from light hadrons) ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) ### **CLAS Longitudinally Polarized Target** - ¹⁵NH₃ and ¹⁵ND₃ target cells - Typical polarizations of 75% (H) and 30% (D) - ¹²C and LHe target cells for unpolarized background subtraction ammonia target cell ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) # Kinematic coverage & statistics ## Many papers already published using EG1 data (including a study of Bloom-Gilman duality): - N. Guler *et al.* (*CLAS Collaboration*), "Precise Determination of the Deuteron Spin Structurevat Low to Moderate Q² with CLAS and Extraction of the Neutron Contribution", Phys. Rev. C 92,v055201(2015). - P. Bosted *et al.* (CLAS Collaboration). "Target and Beam-Target Spin Asymmetries in Exclusive π^+ and π^- electroproduction with 1.6- to 5.7-GeV electrons", Phys. Rev. C 94, 055201(2016) - H. Avakian et al. (CLAS Collaboration), "Measurement of Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target", Phys. Rev. Lett. 105, 262002 (2010). - Y. Prok et al. (CLAS Collaboration), "Moments of the Spin Structure Functions g^p₁ and g^d₁ for 0.05 < Q² < 3.0 GeV²", Phys. Lett. B 672, 12 (2009). - A. Biselli et al. (CLAS Collaboration), "First Measurement of Target and Double Spin Asymmetries for ep → e'pπ⁰ in the Nucleon Resonance Region Above the Δ(1232)", Phys. Rev. C 78, 045204 (2008). - P.E. Bosted et al. (CLAS Collaboration), "Ratios of ¹⁵N/¹²C and ⁴He/¹²C Inclusive Electroproduction Cross Sections in the Nucleon Resonance Region", Phys. Rev. C 78, 015202 (2008). - P.E. Bosted et al. (CLAS Collaboration), "Quark-Hadron Duality in Spin Structure Functions g₁^p and g₁^d", Phys. Rev. C 75, 035203 (2007). - K.V. Dharmawardane et al. (CLAS Collaboration), "Measurement of the x and Q² Dependence of the Spin Asymmetry A₁ of the Nucleon", Phys. Lett. B. 641, 28 (2006). - S. Chen et al. (CLAS Collaboration), "Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target", Phys. Rev. Lett. 97, 072002 (2006). - A. Biselli et al. (CLAS Collaboration), "Study of ep → epπ⁰ in the Δ(1232) Mass Region Using Polarization Asymmetries", Phys. Rev. C 68, 035202 (2003). - R. Fatemi et al. (CLAS Collaboration), "Measurement of the Spin Structure Functions in the Resonance Region for Q² from 0.15 to 1.6 GeV²", Phys. Rev. Lett. 91, 222002 (2003). - J. Yun et al. (CLAS Collaboration), "Measurement of Inclusive Spin Structure Functions of the Deuteron with CLAS", Phys. Rev. C 67, 055204 (2003). - R. DeVita et al. (CLAS Collaboration), "First Measurement of the Double Spin Asymmetry in ep → e'π⁺n in the Resonance Region", Phys. Rev. Lett. 88, 082001 (2002). # Impact of JLab / EG1 data on polarized PDFs Global analysis by JAM (JLab Angular Momentum group) Theory group (W. Meltinchouk *et al.*) Phys Rev D 93, 074005 (2016) ## spin distributions within the nucleon # Final proton "long paper" is now available pending publication in Phys. Rev. C arXiv:1706.10289 #### Determination of the Proton Spin Structure Functions for $0.05 < Q^2 < 5~{ m GeV}^2$ using CLAS ``` R.G. Fersch, N. Guler, P. Bosted, A. Deur, K. Griffioen, C. Keith, S.E. Kuhn, R. Minehart, Y. Prok, Prok, 29 K.P. Adhikari, ²⁵ Z. Akbar, ¹² M.J. Amaryan, ²⁹ S. Anefalos Pereira, ¹⁷ G. Asryan, ⁴³ H. Avakian, ^{36, 17} J. Ball, ⁶ I. Balossino, ¹⁶ N.A. Baltzell, ³⁶ M. Battaglieri, ¹⁸ I. Bedlinskiy, ²² A.S. Biselli, ^{9,4} W.J. Briscoe, ¹⁴ W.K. Brooks, ^{37,36} S. Bültmann, ²⁹ V.D. Burkert, ³⁶ Frank Thanh Cao, ⁸ D.S. Carman, ³⁶ A. Celentano, ¹⁸ S. Chandavar, ²⁸ G. Charles, ²⁹ T. Chetry, ²⁸ G. Ciullo, ^{16, 10} L. Clark, ³⁹ L. Colaneri, ⁸ P.L. Cole, ^{15, 36} N. Compton, ²⁸ M. Contalbrigo, ¹⁶ O. Cortes, ¹⁵ V. Crede, ¹² A. D'Angelo, ^{19,32} N. Dashyan, ⁴³ R. De Vita, ¹⁸ E. De Sanctis, ¹⁷ C. Djalali, ³⁴ G.E. Dodge, ²⁹ R. Dupre, ²¹ H. Egiyan, 36, 42 A. El Alaoui, 37 L. El Fassi, 25 L. Elouadrhiri, 36 P. Eugenio, 12 E. Fanchini, 18 G. Fedotov, 34, 33 A. Filippi, 20 J.A. Fleming, 38 T.A. Forest, 15 M. Garc con, 6 G. Gavalian, 36, 26 Y. Ghandilyan, 43 G.P. Gilfoyle, 31 K.L. Giovanetti, 23 F.X. Girod,^{36,6} C. Gleason,³⁴ E. Golovatch,³³ R.W. Gothe,³⁴ M. Guidal,²¹ L. Guo,^{11,36} K. Hafidi,¹ H. Hakobyan,^{37,43} C. Hanretty,³⁶ N. Harrison,³⁶ D. Heddle,^{7,36} K. Hicks,²⁸ M. Holtrop,²⁶ S.M. Hughes,³⁸ Y. Ilieva,^{34,14} D.G. Ireland,³⁹ B.S. Ishkhanov, 33 E.L. Isupov, 33 D. Jenkins, 40 D. Keller, 41 G. Khachatryan, 43 M. Khachatryan, 29 M. Khandaker, 27, * A. Kim,⁸ W. Kim,²⁴ A. Klein,²⁹ F.J. Klein,⁵ V. Kubarovsky,^{36,30} V.G. Lagerquist,²⁹ L. Lanza,¹⁹ P. Lenisa,¹⁶ K. Livingston, ³⁹ H.Y. Lu, ³⁴ B. McKinnon, ³⁹ C.A. Meyer, ⁴ M. Mirazita, ¹⁷ V. Mokeev, ^{36, 33} R.A. Montgomery, ³⁹ A Movsisyan, ¹⁶ C. Munoz Camacho, ²¹ G. Murdoch, ³⁹ P. Nadel-Turonski, ³⁶ S. Niccolai, ²¹ G. Niculescu, ²³ I. Niculescu, ²³ M. Osipenko, ¹⁸ A.I. Ostrovidov, ¹² M. Paolone, ³⁵ R. Paremuzyan, ²⁶ K. Park, ^{36, 24} E. Pasyuk, ^{36, 2} W. Phelps, 11 S. Pisano, 17 O. Pogorelko, 22 J.W. Price, 3 D. Protopopescu, 26, † B.A. Raue, 11, 36 M. Ripani, 18 D. Riser,⁸ A. Rizzo,^{19,32} G. Rosner,³⁹ P. Rossi,^{36,17} P. Roy,¹² F. Sabatié,⁶ C. Salgado,²⁷ R.A. Schumacher,⁴ Y.G. Sharabian, A. Simonyan, Iu. Skorodumina, A. Simonyan, Skorodumina, Skorodumina S. Stepanyan, ³⁶ I.I. Strakovsky, ¹⁴ S. Strauch, ³⁴ M. Taiuti, ^{13,‡} Ye Tian, ³⁴ B. Torayev, ²⁹ M. Ungaro, ^{36,30} H. Voskanyan, 43 E. Voutier, 21 N.K. Walford, 5 X. Wei, 36 L.B. Weinstein, 29 N. Zachariou, 38 and J. Zhang 36, 29 (The CLAS Collaboration) ``` ### Analysis of Polarized Inclusive ep scattering Double spin asymmetry between + $(\uparrow\uparrow,\downarrow\downarrow)$ and – $(\uparrow\downarrow,\downarrow\uparrow)$ beam and target polarizations $$A_{\parallel} = \frac{1}{P_b P_t F_{DF}} \frac{n^+ - n^-}{n^+ + n^-}$$ ### Analysis of Polarized Inclusive ep scattering Double spin asymmetry between + $(\uparrow\uparrow,\downarrow\downarrow)$ and – $(\uparrow\downarrow,\downarrow\uparrow)$ beam and target polarizations Dilution factor from 12C, LHe runs and radiated cross section model (unpolarized background) #### Analysis of Polarized Inclusive ep scattering Double spin asymmetry between + $(\uparrow\uparrow,\downarrow\downarrow)$ and – $(\uparrow\downarrow,\downarrow\uparrow)$ beam and target polarizations $$A_{\parallel} = \frac{1}{P_b P_t F_{DF}} \frac{n^+ - n^-}{n^+ + n^-}$$ ### Physics quantities virtual photon asymmetries A₁ and A₂ $$A_{||}(\nu, Q^2) = D[A_1(\nu, Q^2) + \eta A_2(\nu, Q^2)].$$ Radiative corrections (difference between red, blue lines) (also nuclear polarization and e⁺e⁻ corrections) spin structure functions g_1 and g_2 $$\frac{A_{||}}{D} = (1+\eta\gamma)\frac{g_1}{F_1} + \gamma(\eta-\gamma)\frac{g_2}{F_1}$$ (kinematics/models) $$D = \frac{1 - E'\epsilon / E}{1 + \epsilon R}; \quad \eta = \frac{\epsilon \sqrt{Q^2}}{E - E'\epsilon} \qquad R = \frac{\sigma_L}{\sigma_T}$$ $A_{||}(\nu, Q^2) = D A_1(\nu, Q^2) + \eta A_2(\nu, Q^2)$ ## A₁ for the proton shown against world data #### Note coverage in resonance region over wide Q2 $A_{||}(\nu,Q^2) = D[A_1^-(\nu,Q^2) + \eta A_2^-(\nu,Q^2)].$ ## A₁ for the deuteron shown against world data #### Coverage comparable to that of proton #### g₁ shown against world data $$\frac{A_{||}}{D} = (1 + \eta \gamma) \frac{g_1}{F_1} + \gamma (\eta - \gamma) \frac{g_2}{F_1}$$ #### **Proton** #### **Deuteron** ## g_1/F_1 vs. Q^2 (shown with E143, EG1-DVCS data) DIS limit / (W = 2 GeV) NLO PDF fit at $Q^2 = 5 \text{ GeV}^2$ # Moments of g1 Needed to test sum rules and determine matrix elements in the OPE (Operator Product Expansion) $$\Gamma_1 = \int g_1 dx$$ (integrated over x from x=0.001 to elastic threshold) **Proton** **Deuteron** (..."truncated moments" used to test local duality...) #### Tests of Bloom-Gillman Duality $\langle g_1(Q^2) \rangle = \frac{\int_{x_l}^{x_h} g_1(x, Q^2) dx}{x_h - x_l}$ Averaging over resonances - comparing to extrapolated NLO PDFs #### previous results 1.6, 5.7 GeV results only (Bosted, *et al.* Phys. Rev. C 75, 035203 (2007)) #### new proton results extended analysis including all 4 beam energies (1.6, 2.5, 4.2, 5.7 GeV) Parton Distribution Functions: Determined to NLO, fit to g_{1QCD} above resonance region Target mass corrections included (Blümlein and Tkbladzke) 10(20)% error for proton(deuteron) (estimate of high-x resummation error) #### Tests of Bloom-Gillman Duality Averaging over resonances - comparing to extrapolated NLO PDFs (see also Bosted, et al. Phys. Rev. C 75, 035203 (2007)) ### Dominating resonances: #### "local" duality results for the proton Large number of less wellestablished resonances #### **Summary:** The EG1 data set (from Jefferson Laboratory Hall-B) offers by far the most comprehensive data coverage of the g_1 polarized structure function available in the resonance region for the study of quark-hadron duality. Analyzed data tables from this experiment are now available and pending final publication in Phys. Rev. C. ## EXTRA SLIDES #### A_1 Deep Inelastic Scattering ($Q^2 > 1$ GeV², W > 2 GeV) DIS results at high x provide insights into QCD models of the nucleon # Moments of g1 Needed to test sum rules and determine matrix elements in the OPE (Operator Product Expansion) $$\Gamma_1 = \int g_1 dx$$ (integrated over x from x=0.001 to elastic threshold) ("first moment" of g_1) #### see also Prok, *et al.* Phys. Rev. B 672, 12 (2009) #### Higher Twist analysis of Γ₁ (includes elastic contribution) Extraction of higher twist elements through a fit by A. Deur #### Forward Spin Polarizability see also Prok, et al. Phys. Rev. B 672, 12 (2009) For scattering cross-sections in terms of Compton amplitudes $$\begin{split} \gamma_0 &= \frac{1}{4\pi} \int_{\nu_{th}}^{\infty} \frac{\sigma_{3/2} - \sigma_{1/2}}{\nu'^3} \, d\nu' \\ &= \frac{16M^2\alpha}{Q^6} \int_0^{x_{th}} x^2 A_1(x,Q^2) F_1(x,Q^2) dx \end{split}$$ #### $\gamma_0^p \, (10^4 \, fm^4)$ EG1b data + extr. EG1b data MAMI ······ MAID Lensky et al. Bernard et al. Model 0.2 0.5 0.1 0.4 $Q^2(\text{GeV}^2)$ #### **Higher Moments** Large *x*-range provided opportunity to measure these $$\Gamma_1^n = \int x^{n-1} g_1(x, Q^2) dx$$ #### First extraction of A₂ and g₂ from EG1 data little world data available! $$A_1 + \eta A_2 = \frac{A_{//}}{D}$$ A_1 = y-intercept, A_2 = slope #### First extraction of A₂ and g₂ from EG1 data little world data available! #### g₂ extracted similarly $$\frac{A_{||}}{D} = (1 + \eta \gamma) \frac{g_1^p}{F_1^p} + \gamma (\eta - \gamma) \frac{g_2^p}{F_1^p}$$ -Many EG1 publications helped build global models of nucleon spin structure! CLAS12 longitudinally polarized target design -The 12 GeV longitudinally polarized target: higher x means better testing of QCD models #### **Blümlein and Tkbladzke Target Mass Corrections** $$g_1^{TM}(x,Q^2) = \frac{x}{\xi(1+\gamma)^{3/2}} g_1^{QCD}(\xi,Q^2)$$ $$+ \frac{(x+\xi)\gamma}{\xi(1+\gamma)^2} \int_{\xi}^{1} \frac{du}{u} g_1^{QCD}(u,Q^2)$$ $$- \frac{\gamma(2-\gamma)}{2(1+\gamma)^{5/2}} \int_{\xi}^{1} \frac{du}{u} \int_{u}^{1} \frac{dv}{v} g_1^{QCD}(v,Q^2)$$ Blümlein and Takbladzke, Nucl. Phys. B553, 427 (1999) $$\xi \equiv 2x/(1+\sqrt{1+4M^2x^2/Q^2})$$ #### **Errors due to high-x resummation:** Bianchi, Fantoni, Liuti, Phys. Rev. D 69, 014505 (2004)