Measurement of polarization observables for the Λ hyperon.

Shankar Adhikari Florida International University

NSTAR 2017

Outline

- Motivation
- Experiment
- Events Selection
- Preliminary results for C_x, P and C_z.
- Conclusion and outlook.

Strong Interaction

- Large Q; perturbative theory (asymptotic freedom)
- Small Q; perturbative theory is not possible (confinement)

GOAL:

Better understand QCD at low Q.

- -> How does QCD give rise to hadrons?
- -> What are the relevent hadronic degrees of freedom?
- -> What are the effective forces?

Method: Baryon spectroscopy

Baryon Spectroscopy

- The goal is to understand dynamics of the constituents inside the nucleon (relevant hadronic degrees of freedom).
 - understand nucleon excitation spectra (N^*).
- Missing baryon problem;
 - predicted resonance are not conclusively observed (eg. CQM and Lattice-QCD).
 - Resonances are broad and overlapping.
 - May not be coupled with
 Nπ (where most of the world data's available).
- KY channel

has been recently used to understand N*.

Why K⁺Λ?

- Observed N* (excited state of nucleon), already been verified coupled with K⁺Λ.
- ★ K⁺ Λ Isospin I = ½;
 - couple with N* not with Δ*(no interference)
- few density of states compare to Nπ.
- Self analyzing lambda decay, spin
 observables can be measured by decay
 product of Λ -> pπ⁻.

Add more data point W > 2.6 GeV.

Table	1	. The	status	of	the	N	reso	nan	ces.	Only	tl	iose
with	an	overa	dl statu	is of	***	or	****	are	inc	luded	in	the
main	$\mathbf{B}_{\mathbf{a}}$	aryon	Summa	ary 1	Fable	e.,						

Particle J^P	overall				Status as seen in						
a di cicici o		$N\gamma$	$N\pi$	$N\eta$	$N\sigma$	$N\omega$	ΛK	EK	$N\rho$	$\Delta \pi$	
$N = 1/2^+$	****										
$N(1440) 1/2^+$	****	****	****		***				*	***	
$N(1520) 3/2^{-}$	****	****	****	***					***	***	
$N(1535) 1/2^{-}$	****	****	****	****					**	*	
$N(1650) 1/2^{-}$	****	****	****	***			***	*	**	***	
$N(1675) 5/2^{-}$	****	****	****	٠			*		*	***	
$N(1680) 5/2^+$	****	****	****	*	**				***	***	
$N(1700) 3/2^{-1}$	***	**	***	*			*	ŀ.	*	***	
$N(1710) 1/2^+$	****	****	****	***		**	****	*	*	**	
$N(1720) 3/2^+$	****	****	****	***			**	**	**	*	
$N(1860) 5/2^+$	**		**						*	۲	
$N(1875) 3/2^{-1}$	***	***	*			**	***	**		***	
$N(1880) 1/2^+$	**	*	*		**		*				
$N(1895) 1/2^{-}$	**	**	*	**			**	*			
$N(1900) 3/2^+$	***	***	**	**		**	***	**	*	**	
$N(1990) 7/2^+$	**	**	**					*			
$N(2000) 5/2^+$	**	**	*	**			**	*	**		
$N(2040) 3/2^+$	*		*								
$N(2060) 5/2^{-}$	**	**	**	٠				**			
$N(2100) 1/2^+$	*		*								
$N(2120) 3/2^{-}$	**	**	**				*	*			
$N(2190) 7/2^{-}$	****	***	****			*	**		٠		
$N(2220) 9/2^+$	****		****								
$N(2250) 9/2^{-}$	****		****								
$N(2300) 1/2^+$	**		**								
$N(2570) 5/2^{-}$	**		**								
$N(2600) 11/2^{-}$	***		***								
$N(2700) 13/2^+$	**		**								

- **** Existence is certain, and properties are at least fairly well explored.
- *** Existence is very likely but further confirmation of decay modes is required.

** Evidence of existence is only fair.

Evidence of existence is poor.

Why K⁺Λ?

• Why high energy part is also important?

High energy non-resonant background contribution can be measure.

Polarization observables

- Photo-production describes by 4 complex amplitudes.
 Polarized Beam
- Total 16 observables.
 - 3 single pol. observables.
 - 4 double pol observables.
 - 8 observables need to separate amplitude at given W along
 with differential cross section.

Polarized	Beam	Target	Hyperon		
	unpol. linear circular	x y'z	x' y' z'		
Unpolar.	σ				
Beam: linear circular	Σ	H G F E	$egin{array}{ccc} O_{x'} & O_{z'} \ C_{x'} & C_{z'} \end{array}$		
Target: x z		Т	$\begin{array}{ccc} T_{x'} & T_{z'} \\ L_{x'} & L_{z'} \end{array}$		
Hyperon:			Р		

- Polarization observables are sensitive to interference from different states and different process.
- This analysis : Transferred Polarization C_x , C_z and induced polarization P is measured.

Defining C_x, C_z $\gamma p \to K^+ \Lambda$ **Circularly polarized real** photon K $\hat{z} = \hat{p}_{\gamma}$ $= \frac{\hat{p}_{\gamma} \times \hat{p}_{K}}{|\hat{p}_{\gamma} \times \hat{p}_{K}|}$ CM frameŶ $=\hat{y}\times\hat{z}$ $\Lambda \ rest \ frame$

Measure polarization transfer from γ to Λ in the production plane along "x" and "z".

Defining C_x, C_z and P

$$\rho_{\Lambda} \frac{d\sigma}{d\Omega_{K^+}} = \frac{d\sigma}{d\Omega_{K^+}} \Big|_{unpol} \{ 1 + \sigma_y P + P_{beam} (C_x \sigma_x + C_x \sigma_x) \}$$

$$P_{beam}$$
 = Photon beam polarization.

$$ho_\Lambda = \left(1 + ec{\sigma}.ec{P_\Lambda}
ight)$$
 Density matrix.

 $P_{\Lambda_X} = P_{beam} C_X$; transferred polarization along x.

 $P_{\Lambda_Y} = P$; induced polarization along y.

 $P_{\Lambda_Z} = P_{beam} C_Z$; transferred polarization along z.

CEBAF Large Acceptance Spectrometer (CLAS)

60-65 nA electron beam Magnet return voke Photons Hall B detector Radiator Magnet pole Full-energy electrons 384 E counters 1 T-counters Torus Magnet Beam Line 2 m 3 m m 0.80 0.70 $k/E_0 = 0.95$ 0.90 0.50 0.30 0.40 0.20 Target Geometry of tagging system **Drift-Chambers** Time-of-Flight Produce real photon beam Čerenkov Counters through Bremsstrahlung process. Electrocalorimeters

g12 Experiment and Analysis Reaction

- 60-65 nA electron beam.
- Circularly polarized photon beam.
- Photon beam energy up to 5.5 GeV.
- Average beam pol. 0.7±0.05.
- 40 cm long unpolarized hydrogen target.
- Large amount of meson photo-production data were collected.

 $\gamma p \to K^+ \Lambda$

Decay mode $\Lambda \rightarrow p\pi^{-}$

Event Selection

3track K⁺pπ⁻

2track K⁺p(π⁻)

Observables extraction Methods

• 1d fit method

$$A(\cos\theta_{x/z}^p) = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_{\circ} C_{x/z} \cos\theta_{x/z}^p$$

 α = Weak decay asymmetry 0.642

- 2d fit method $A(\cos \theta_x^p, \cos \theta_z^p) = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_{\circ} C_x \cos \theta_x^p + \alpha P_{\circ} C_z \cos \theta_z^p$
- Maximum likelihood method
 - Event by event basis.
 - Reduce the bias comes from acceptance because of event wise analysis. $\begin{aligned} & f(\cos\theta_x^p,\cos\theta_z^p) = (1 + \alpha P_\circ(C_x\cos\theta_x^p + C_z\cos\theta_z^p)) \\ & L(C_x,C_z) = \prod_{i=1}^n f(\cos\theta_x^p,\cos\theta_z^p) \end{aligned}$
 - Minimize negative log likelihood to fit the data;

$$l = -\sum_{i=1}^{n} \log f(\cos \theta_x^p, \cos \theta_z^p)$$

NSTAR 2017

Comparision of 3 methods

- Shows excellent agreements. Later showing results only for maximum likelihood method.
- Why ML? applicable even with low statistics/bin.

Comparision between 2 topology: C_x, C_z

Comparing 2 and 3 track:

- High statistics for 2 track
- Small statistical uncertainity
- Self consistent between 2 topology.

Comparision with CLAS (2007): C_x , C_z

- Comparing 2 and 3 track:
 - High statistics for 2 track
 - Small statistical uncertainity
- Comparing 2, 3 track with CLAS (2007) results:
 - Much more statistics than previous measurement.
 - 2 track topology has smaller statistical uncertainity.
 - Good agreements.
- Higher kinematic coverage:
 - Include results *W* > 2.6 GeV.

C_x, C_z cont...

C_x,*C*, cont...*P*?

Induced Polarization of $\Lambda \rightarrow P$

- Independent with photon beam polarization.
- * Measure simultaneously with C_x and C_z using ML.

 $f(\cos\theta_x^p, \cos\theta_y^p, \cos\theta_z^p) = (1 + \alpha P \cos\theta_y^p + \alpha P_{\circ}(C_x \cos\theta_x^p + C_z \cos\theta_z^p))$

P comparision with CLAS (2010)

Conclusion and Outlook

- Measured Λ polarization observables C_x , P and C_z using g12 dataset for 1.75 < W < 3.3 GeV.
 - 3 method: 1d/2d/ML methods, all showing consistent results.
 - 2 topologies analyzed: results are mostly self-consistent.
- Preliminary C_x/C_z results:
 - Statistical uncertainty are smaller than previous g1c results for w < 2.6 GeV.
 - In the good agreement with earlier CLAS results.
 - First time measurement for W > 2.6 GeV.
 - Preliminary P results:
 - Agree well with CLAS 2010 results.
 - Can be used to constrain non-resonant (t-channel) contribution.

Thank You!

Energy dependent mass distribution for K $^{+}p\pi^{-}$ vs K $^{+}p(\pi^{-})$

Binning: K⁺pπ⁻ w[1.75, 2.4) = 16 w[2.4,3.3] = 8 K⁺p(π⁻) w[1.75, 2.4) = 26 w[2.4,3.3] = 8

Missing mass of kaon.

NSTAR 2017

Energy dependent mass distribution for K $^{+}p\pi^{-}$ vs K $^{+}p(\pi^{-})$

Energy dependent mass distribution for K $^{+}p\pi^{-}$ vs K $^{+}p(\pi^{-})$

R values for the Λ

Kinematic Coverage

- Pre-existing data for $\gamma + p \to K^+$ on polarization observables and cross sections from CLAS(JLab), LEPS, SAPHIR, GRAAL.
- Kinematic coverage:
 - CM energy up to 2.6 GeV.
- Able to extract polarization observables w > 2.6 GeV, where previous measurements are missing.
- Higher energies measurement helps us to constrain non-resonant contribution.

Data Analysis

Selection criteria:

- -> Events need to produce from target.
- -> Remove events outside physical region of detector.

θ[‴](P

ື θ sin (o) (P)

Event Selection

***** Ue Momentum and energy along with info. of detector. ***** Two hypothesis: $K^+p\pi^-$, $K^+p(\pi^-)$

C_x, C_z cont...

0

C_x,*C*, cont... *P*?

Induced Polarization of $\Lambda \rightarrow P$

Independent with photon beam polarization.

* Measure simultaneously with C_x and C_z using ML.

 $f(\cos\theta_x^p, \cos\theta_y^p, \cos\theta_z^p) = (1 + \alpha P \cos\theta_y^p + \alpha P_{\circ}(C_x \cos\theta_x^p + C_z \cos\theta_z^p))$