Exclusive π^- Electroproduction off the Neutron in Deuterium in the Resonance Region

Ye Tian

Syracuse University

PhD Advisor: Ralf Gothe

Partially Supported by National Science Foundation under Grant: PHY-1205782

Outline

Introduction Data Analysis Preliminary Results Summary and Outlook

Motivation

Pion Electroproduction Reactions

$$\begin{array}{c} \gamma^{*} + p \rightarrow \pi^{0} + p \\ \gamma^{*} + p \rightarrow \pi^{+} + n \\ \gamma^{*} + d(p) \rightarrow \pi^{+} + n + n_{s} \\ \gamma^{*} + d(n) \rightarrow \pi^{-} + p + p_{s} \end{array} \right\} \xrightarrow{H_{2} \text{ target}} \begin{array}{c} \text{CLAS} \\ \text{ele} \\ \text{run} \\ \text{D}_{2} \text{ target} \end{array}$$

$$\begin{array}{c} \text{CLAS} \\ \text{ele} \\ \text{run} \\ \text{D}_{2} \text{ target} \end{array} \xrightarrow{V^{*} + d(p) \rightarrow \pi^{+} + \pi^{-} + p + n_{s} \end{array}$$

JLab Continuous Electron Beam Electron Beam Accelerator

ele run

- Electron beam: $E_0 = 2.039 \text{ GeV}$
- Target: liquid deuterium
- Integrated luminosity: 2.6788x10³⁹ cm⁻²
- Target length: 2 cm

Exclusive Quasi-free π^- Electroproduction

E₀=2.039 GeV

Variable	Lower limit	Upper limit	Number of bins	Bin size
W GeV	1.1	1.825	29	0.025
$Q^2 GeV^2$	0.4	1.0	3	0.2
$\cos \theta^*$	-1	1	10	0.2
ϕ^*	0 °	360°	9, 8, 6	40°, 45°, 60°

Inclusive Cross Section

Final State Interaction Sketch

Exclusive Event Selection

Exclusive Quasi-free Event Selection

MAID2000 generated data

 $\gamma^* + n \rightarrow p + \pi^-$

MAID2000 generated data

 $\gamma^* + n \rightarrow p + \pi^-$

experimental data

$$\gamma^* + d(n) \rightarrow p + \pi^- + p_s$$

experimental data

$$\gamma^* + d(n) \rightarrow p + \pi^- + p_s$$

Background Study

$$\frac{(\Delta N_{full}(W,Q^2,\cos\theta^*,\phi^*) - S_{ratio}\Delta N_{full}(W,Q^2,\cos\theta^*,\phi^*))R_{BC}}{\Gamma_v A(W,Q^2,\cos\theta^*,\phi^*)\Delta W\Delta Q^2\Delta\cos\theta^*\Delta\phi^*L_{int}}$$

$$\frac{d^{2}\sigma^{quasi-free}}{d\Omega_{\pi}^{*}} = \frac{d^{2}\sigma^{cut}}{d\Omega_{\pi}^{*}} \frac{1}{r(W,Q^{2},\cos\theta^{*},\phi^{*})} \overset{\text{smeared MC single pion with } M_{s}^{*}cut}{\int_{\mathbb{R}}^{2} (GeV)}$$

Final State Interaction Contribution Factor

24

Systematic Uncertainties

Sources	Uncertainty $(\%)$		
Electron θ_{CC} cut	0.78		
Electron SF cut	1.26		
Electron fiducial cut	2.10		
Proton ΔT cut	1.39		
Proton fiducial cut	2.39		
Pion ΔT cut	1.78		
Pion fiducial cut	1.73		
$M_s^2 \mathrm{cut}$	2.29		
$p_s { m cut}$	2.21		
Boosts	2.12		
Potential	3.2		
Bin center correction	0.55		
Radiative correction	1.0		
Normalization	5.0		
Total	8.39		

Summary and Outlook

- The exclusive full, quasi-free γ*n (p) → π⁻p (p) reaction cross sections in the corresponding kinematic coverage W = 1.1 1.825 GeV and Q² = 0.4 1.0 GeV² is first time achieved, from which the n-N* transition form factors will be extracted by phenomenological models.
- We will need more data statistics for $\gamma^*n(p) \rightarrow \pi^-p(p)$ channel to get better fit results in both very forward and backward polar and azimuthal angles of π^- .
- The 1st round review feedback of my analysis note has been received, and a revised version will be available soon.

Thank you

П 0000 П

Backup

Data Analysis Flowchart

Radiative Correction

The X and Y projection of Z_{nrest} in the CM frame

Final state interactions

Other Channels

 $\gamma^* p(n) \rightarrow p \pi^+ \pi^-(n)$ main background channel

 $\begin{cases} \gamma^* p(n) \rightarrow p \overline{\pi^0(n)} \rightarrow \pi^- p \text{ final state goes in channel} \\ \gamma^* n(p) \rightarrow p \overline{\pi^-(p)} \rightarrow \pi^0 n \text{ final state goes out channel} \end{cases}$

Need combined analysis channels

$$\gamma^* + p \rightarrow \pi^+ + n$$

$$\gamma^* + d(p) \rightarrow \pi^+ + n + n_s$$

$$\gamma^* + d(n) \rightarrow \pi^- + p + p_s$$

Data Status

Reaction	Observable	W value	Q^2 value	Lab/experiment
		GeV	GeV^2	
$en(p) \rightarrow e'\pi^- p(p)$	$R_{\pi^- \setminus \pi^+}$	2.15, 3.11	1.2, 4.0	Cornell/WSL [13]
$ep(n) \rightarrow e' \pi^+ n(n)$				
$en(p) \rightarrow e'\pi^{-}p(p)$	$d\sigma \backslash d\Omega_{\pi}$	2.15,2.65	1.2, 2.0	Cornell/WSL [14]
$ep(n) \rightarrow e^{'}\pi^{+}n(n)$				
$en(p) \rightarrow e'\pi^- p(p)$	$R_{\pi^- \setminus \pi^+}$	1.28-1.71	0.5	Daresbury/NINA [58]
$ep(n) \rightarrow e^{'}\pi^{+}n(n)$				
$en(p) \rightarrow e'\pi^- p(p)$	$R_{\pi^- \setminus \pi^+}$	1.3 - 1.7	1.0	Daresbury/NINA [42]
$ep(n) \rightarrow e^{'}\pi^{+}n(n)$				
$ep(n) \rightarrow e'\pi^+n(n)$	$R_{\pi^+ \setminus \pi^-}$	1.16, 1.232	0.0856, 0.0656	ALS [29]
$en(p) ightarrow e^{'} \pi^{-} p(p)$				
$en(p) \rightarrow e'p\pi^{-}(p)$	σ_L, σ_T	1.15, 1.6	0.4	JLab-HallA [28]
$en(p) \rightarrow e'p\pi^{-}(p)$	σ_L, σ_T	1.95,2.45	0.6, 1.0, 1.6, 2.45	JLab-HallC [34]

$$R_{\pi^- \setminus \pi^+} = \frac{d\sigma(\gamma_\nu + n \to \pi^- + p)}{d\sigma(\gamma_\nu + p \to \pi^+ + n)} = \frac{Rate(e + d \to e + \pi^- + p(p))}{Rate(e + d \to e + \pi^+ + n(n))}$$

$$q^{\mu} + n^{\mu} + p_i^{\mu} = \pi^{\mu} + p^{\mu} + p_s^{\mu}$$