Determination of the Polarization Observables C_x , C_z , and P_y for the Quasi-Free Mechanism in $\overrightarrow{\gamma} d \rightarrow K^+ \overrightarrow{\Lambda} n$

Tongtong CaO (Hampton University) NSTAR 2017 Conference

Why Study *K*¹ Photoproduction?

- The study of nucleon resonance excitation plays an important role in building a comprehensive picture of the strong interaction.
- The theoretical work on quark models in the intermediate energy range predicts a rich resonance spectrum.
- Besides have been observed reactions involving pions in the initial and/or final states, those "missing" resonances may couple strongly to other channels, such as $K\Lambda$ and $K\Sigma$ channels.
- Many experimental results for $\overrightarrow{\gamma} p \to K^+ \overrightarrow{\Lambda}$ have been published, from total cross section to polarization observables.

Importance of QF Study in $\overrightarrow{\gamma} d \to K^+ \overrightarrow{\Lambda} n$

- Scattering off quasi-bound neutrons is used to extract observables for scattering off the free neutron.
 - Final-state interactions (FSI) effects.
 - Off-shell and nuclear effects.
- We present an experimental study of the effect of FSI and Fermi motion on observables off the free proton obtained from data off the bound proton in $\overrightarrow{\gamma} d \rightarrow K^+ \overrightarrow{\Lambda} n$.
- Studied observables: induced \varLambda polarization and polarization transfers.

Main Mechanisms of $\overrightarrow{\gamma} d \to K^+ \overrightarrow{\Lambda} n$

Experimental Observables

Helicity-dependent polarized differential cross section for hyperon photoproduction off the nucleon.

 $\frac{d\sigma^{\pm}}{d\Omega} = \frac{d\sigma}{d\Omega}|_{unpol}(1 \pm \alpha P_{circ}C_x \cos\theta_x \pm \alpha P_{circ}C_z \cos\theta_z + \alpha P_y \cos\theta_y)$ A self-analyzing power: $\alpha = 0.642 \pm 0.013$

 $\begin{array}{c} \text{CMS} & \hat{y} \\ \hat{x} \\ \hat{z} \\ \hat{y} \\ \hat{z} \\ \hat{y} \\$

Experimental Facility: CEBAF and Photon Tagger

CEBAF

Hall-B Photon Tagger

 $E_{\gamma} = E - E'$ $E_{e}: 2 \text{ GeV}, 2.65 \text{ GeV}$ $P_{e}: \sim 85\%$ $E_{\gamma}: [0.9, 2.6] \text{ GeV}$ $P_{\gamma}: [30\%, 85\%]$ Currently, 12 GeV upgrade has been completed and a new hall D is in service.

Experimental Facility: CLAS

$$\overrightarrow{\gamma}d \to \overline{K^+}\overrightarrow{\Lambda}n$$

$$\downarrow p\pi^-$$

K^+ , p, π^- are detected.

CLAS: Multi-particle charged final state Acceptance: Almost 4π

Figure from: B. Mecking et al. Nucl. Instr. Meth. A 503, 513(2003).

Selection of QF Mechanism

The removal of events with $p_n < 0.2$ GeV/c provides a sample that is by far dominated by FSI events. Standard analysis procedure.

Paris Potential describes well low p_n data. High-momentum tail drops off at ~0.6 GeV/c: effect on data interpretation.

Effect of Missing Momentum Cut

 $\cos\theta_{KCM}$

 C_{z}

 $\cos\theta_{KCM}$

 $\cos\theta_{KCM}$

Comparison With g1c Results

 $\cos\theta_{KCM}$

Summary

- Comprehensive results for C_x , C_z , and P_y in the kinematic bins of E_y (0.9 2.6 GeV) and $\cos\theta_{KCM}$ (-1, 1) have been obtained for $K^+\Lambda$ photoproduction off the bound proton.
- The contamination of FSI events is about 1% for target nucleon momenta below 0.2 GeV/c.
- The dependence of an observable on the target nucleon momentum is different for different photon energy ranges. Polynomial extrapolation to p = 0 GeV/c could allow to obtain more accurate estimates of observables for scattering off the free nucleon than integrating over a range of p. Can be easily applied to high-statistics samples.
- Theoretical studies of quasi-free observables are very important to understand how to extract unbiased free-nucleon observables.

Backup Slides

Photon Polarization

The electron polarization for some special runs were measured by the M ϕ ller polarimeter.

The polarization of the photon beam was calculated using the Maximon and Olson relation

Reaction Yields

19

Background Subtraction

counts

Method 2 of Observable-Extraction: Weight for Each Event

Weight = (All – Backgrounds) / All

Method 2 of Observable-Extraction: The Maximum Likelihood Method

Non-normalized Probability Density Function (PDF) defined from the polarized differential cross section:

$$PDF = \frac{d\sigma}{d\Omega}_{|unpol|} (1 \pm \alpha P_{circ} C_x \cos \theta_x \pm \alpha P_{circ} C_z \cos \theta_z + \alpha P_y \cos \theta_y)$$

Total likelihood is the product of the likelihoods for all individual events:

$$logL = b + \sum_{i=1}^{n^+} log[(1 + \alpha P_{circ}^i C_x \cos \theta_x^i + \alpha P_{circ}^i C_z \cos \theta_z^i + \alpha P_y \cos \theta_y^i)w^i]$$
$$\sum_{j=1}^{n^-} log[(1 - \alpha P_{circ}^j C_x \cos \theta_x^j - \alpha P_{circ}^j C_z \cos \theta_z^j + \alpha P_y \cos \theta_y^j)w^j]$$

Next side will introduce how to set weight w^i and w^j for each event.

Why the Maximum Likelihood Method Can Ignore Acceptance?

Non-normalized PDF with consideration of acceptance:

$$PDF = A(\theta, \phi)\sigma^{\pm}(\theta, \phi; C_x, C_z, P_y)w$$

Total likelihood: $logL(C_x, C_z, P_y) = \sum_{i=1}^{n^+} logA(\theta_i, \phi_i) + \sum_{j=1}^{n^-} logA(\theta_j, \phi_j)$
 $+ \sum_{i=1}^{n^+} log[\sigma^+(\theta_i, \phi_i; C_x, C_z, P_y)w_i] + \sum_{j=1}^{n^-} log[\sigma^-(\theta_j, \phi_j; C_x, C_z, P_y)w_j]$

Equation array to obtain C_x , C_z , and P_y :

$$\frac{\partial logL(C_x, C_z, P_y)}{\partial C_x} = \frac{\partial \sum_{i=1}^{n^+} log[\sigma^+(\theta_i, \phi_i; C_x, C_z, P_y)w_i]}{\partial C_x} + \frac{\partial \sum_{j=1}^{n^-} log[\sigma^-(\theta_j, \phi_j; C_x, C_z, P_y)w_j]}{\partial C_x} = 0$$

$$\frac{\partial logL(C_x, C_z, P_y)}{\partial C_z} = \frac{\partial \sum_{i=1}^{n^+} log[\sigma^+(\theta_i, \phi_i; C_x, C_z, P_y)w_i]}{\partial C_z} + \frac{\partial \sum_{j=1}^{n^-} log[\sigma^-(\theta_j, \phi_j; C_x, C_z, P_y)w_j]}{\partial C_z} = 0$$

$$\frac{\partial logL(C_x, C_z, P_y)}{\partial P_y} = \frac{\partial \sum_{i=1}^{n^+} log[\sigma^+(\theta_i, \phi_i; C_x, C_z, P_y)w_i]}{\partial P_y} + \frac{\partial \sum_{j=1}^{n^-} log[\sigma^-(\theta_j, \phi_j; C_x, C_z, P_y)w_j]}{\partial P_y} = 0$$

Acceptance is cancelled because it's independent of polarization observables.

Simulation Study to Understand Different Methods

A study was used to evaluate potential bias of the maximum likelihood method and the binned methods.

- 6000 different experiments, with 10⁶ events in each experiment, were generated according to the differential polarized cross section with realistic values of C_x , C_z , and P_y for $\overrightarrow{\gamma} p \rightarrow K^+ \overrightarrow{\Lambda}$.
- Generated data were processed through GSIM and gpp.
- After raw data were skimmed, the observables were extracted using the maximum likelihood method and the binned methods.

Observable-Extraction Methods

• One-dimensional fit:

$$Asym = \frac{Y^+ - Y^-}{Y^+ + Y^-} = \frac{\int \int \frac{d\sigma^+}{d\Omega} d(\cos\theta_y) d(\cos\theta_{z/x}) - \int \int \frac{d\sigma^-}{d\Omega} d(\cos\theta_y) d(\cos\theta_{z/x})}{\int \int \frac{d\sigma^+}{d\Omega} d(\cos\theta_y) d(\cos\theta_{z/x}) + \int \int \frac{d\sigma^-}{d\Omega} d(\cos\theta_y) d(\cos\theta_{z/x})} = \alpha P_{circ} C_{x/z} \cos\theta_{x/z}$$

• **Two-dimensional fit:** $Asym = \frac{Y^{+} - Y^{-}}{Y^{+} + Y^{-}} = \frac{\int \frac{d\sigma^{+}}{d\Omega} d(\cos\theta_{y})) - \int \frac{d\sigma^{-}}{d\Omega} d(\cos\theta_{y})}{\int \frac{d\sigma^{+}}{d\Omega} d(\cos\theta_{y})) + \int \frac{d\sigma^{-}}{d\Omega} d(\cos\theta_{y})} = \alpha P_{circ} C_{x} \cos\theta_{x} + \alpha P_{circ} C_{z} \cos\theta_{z}$

Maximum likelihood Method:

 $PDF = \frac{d\sigma}{d\Omega}|_{unpol}(1 \pm \alpha P_{circ}C_x \cos\theta_x \pm \alpha P_{circ}C_z \cos\theta_z + \alpha P_y \cos\theta_y)$

Effect of Acceptance

Comprehensive studies by analytical analysis and simulation tell us

- The effect of acceptance cannot be ignored in 1D fit, especially for C_x .
- 2D fitting can reduce the effect of the acceptance to some extent.
- The maximum likelihood method can reduce the effect of acceptance to the largest extent.

Why is the Bias Small for C_z from 1D Fit?

In the spherical coordinate system:

$$\begin{array}{ll} \cos \theta_x = \sin \theta \cos \phi & \cos^2 \theta_x + \cos^2 \theta_y + \cos^2 \theta_z = 1 \\ \cos \theta_y = \sin \theta \sin \phi & \theta_z = \cos \theta & \theta_x, \theta_y, \text{ and } \theta_z \text{ are not independent.} \end{array}$$

Event yield: $Y^{\pm}(\theta, \phi) = N_{\gamma}^{\pm} N_T \sigma^{\pm}(\theta, \phi) A(\theta, \phi)$ Integral over ϕ : $Y^{\pm}(\theta) = c(A(\theta) \pm \alpha P_{circ}C_x \sin \theta A_x(\theta) \pm \alpha P_{circ}C_z \cos \theta A(\theta) + \alpha P_y \sin \theta A_y(\theta))$ $A(\theta) = \int_0^{2\pi} A(\theta, \phi) d\phi; A_x(\theta) = \int_0^{2\pi} A(\theta, \phi) \cos \phi d\phi; A_y(\theta) = \int_0^{2\pi} A(\theta, \phi) \sin \phi d\phi$ $A_x(\theta) = \int_0^{2\pi} A(\theta, \phi) \cos \phi d\phi < \int_0^{2\pi} A(\theta, \phi) |\cos \phi| d\phi < |\cos \phi|_{max} \int_0^{2\pi} A(\theta, \phi) d\phi = \int_0^{2\pi} A(\theta, \phi) d\phi = A(\theta)$ Asymmetry: $Asym = \frac{Y^+ - Y^-}{Y^+ + Y^-} = \frac{\alpha P_{circ}C_x \sin \theta A_x(\theta) + \alpha P_{circ}C_z \cos \theta A(\theta)}{A(\theta) + \alpha P_y \sin \theta A_y(\theta)}$ Generally, $|C_x| << |C_z|, |P_y| < |C_z|$

Therefore, $Asym \approx \alpha P_{circ}C_z \cos \theta_z$

Why is the Bias Large for C_x from 1D Fit?

In general, C_x is small relative to C_z and P_y , so C_z and P_y terms do not cancel. Therefore, the asymmetry for C_x is not a linear function of $\cos\theta_x$.

- The effect of acceptance cannot be ignored in 1D fit, especially for C_x .
- The situation with P_{y} is somewhat in-between C_{x} and C_{z} if it's extracted by 1D fit.
- 2D fitting can reduce the effect of the acceptance to some extent.

Effect of Axis Convention

Convention 1:

$$\hat{z} = \hat{p}_{\gamma}$$
$$\hat{y} = \frac{\hat{p}_{\gamma} \times \hat{p}_{K}}{|\hat{p}_{\gamma} \times \hat{p}_{K}|}$$
$$\hat{x} = \hat{y} \times \hat{z}$$

Convention 4:

$$\begin{cases} \hat{z} = \frac{\hat{p}_{\Lambda} + \hat{p}_{K}}{|\hat{p}_{\Lambda} + \hat{p}_{K}|} \\ \hat{y} = \frac{\hat{p}_{\Lambda} \times \hat{p}_{K}}{|\hat{p}_{\Lambda} \times \hat{p}_{K}|} \\ \hat{x} = \hat{y} \times \hat{z} \end{cases}$$

