

Coherent and incoherent DVCS and π^0 production on ⁴He

S. Stepanyan (JLAB)

Nucleon and Resonance Structure with Hard Exclusive Processes IPN-ORSAY, May 29 – 31, 2017

Outline

- DVCS and π^0 production on spin and isospin zero target
- CLAS/EG6 experiment at JLAB
- Radial Time Projection Chamber
- BSA in coherent and incoherent DVCS
- BSA in coherent and incoherent π^0 production
- Future measurements with CLAS12 in Hall-B
- Summary

Beam Spin Asymmetry in DVCS on nuclei

✓ Coherent DVCS,
$$\vec{e}A \rightarrow e'A'\gamma$$
:

Study the partonic structure of the nucleus. For spinless nuclei (⁴He, ¹²C, ¹²O ...), in the forward limit only one chiral-even GPD ($H_A(x,\xi,t)$) is needed to parametrize the nucleus structure and hence the BSA -

 $A_{LU} = \frac{\alpha_0(\phi) \cdot \mathcal{H}_{Im}}{\alpha_1(\phi) + \alpha_2(\phi) \cdot \mathcal{H}_{Re} + \alpha_3(\phi) \cdot [\mathcal{H}_{Re}^2 + \mathcal{H}_{Im}^2]}$

- \mathcal{H} Compton Form-factor
- $\alpha_j(\phi)$ Functions of angle between lepton and hadron scattering planes
- ✓ Incoherent DVCS, $\vec{e}A \rightarrow e'N'\gamma X$:

FNCF

Study the partonic structure of the bound nucleon. Four ciral-even GPDs $(H(x,\xi,t), \tilde{H}(x,\xi,t), E(x,\xi,t), \tilde{E}(x,\xi,t))$

 $A_{LU} \propto \alpha(\phi) \{ F_1 H + \xi (F_1 + F_2) \widetilde{H} + \kappa F_2 E \}$

Beam Spin Asymmetry in π^0 production

$$\frac{d^{2}\sigma}{d\varphi dt} = \frac{1}{2\pi} \left[\frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\varphi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos(2\varphi) + h\sqrt{2\varepsilon(\varepsilon-1)} \frac{d\sigma_{LT'}}{dt} \sin(\varphi) \right]$$

✓ Coherent π^0 production, $eA \rightarrow e'A'\pi^0$:

At $Q^2 \sim \text{few GeV}^2$, transverse virtual photon contribution dominates the production on the nucleon. Contribution of a longitudinal virtual photon increases in the production on a spinless nuclei, cross section of the photo-production on a spinless nuclei (⁴He, ¹²C, ¹²O ...) vanishes with $\vartheta_{cm} \rightarrow 0$:

$$\frac{1}{F^2(t)}\frac{d\sigma_T}{d\Omega} \sim \sin^2\vartheta_{cm}$$

$$A_{LU} \sim \sigma_{LT'} \sim \widetilde{H} * \widetilde{H}_T$$

 ✓ For the proton target, the flavor structure for π⁰ production process is 2*u+d.

For an isospin zero target, e.g. ⁴He, the flavor structure is u+d

CLAS/Eg6 experiment, Nov-Dec 2009

- Meson Spectroscopy and DVCS (coherent and incoherent) on ⁴He
- Both experiments make use of zero spin and isospin of the target to restrict production mechanisms
- Both experiments require detection and identification of recoil α -particles
 - 2nd Generation Radial Time Projection Chamber with 20 cm long, 6 atm, ⁴He gaseous target located inside of the Hall-B superconducting solenoid magnet

20-cm-long, 15 cm in diameter cylindrical detector positioned around the 6 atm ⁴He gaseous target. The target cell is a 25-cm-long and 6-mm-diameter Kapton tube with 27- μ m-thick walls.

- Production data taking ~200mC of beam on target (20 PAC days) with 6.06 GeV polarized electrons
- RTPC calibration runs at 1.2 GeV

RTPC Calibration

- Beam energy 1.2 GeV, the same detector configuration as for production data taking
- Both exclusive and inclusive elastic scattering
 - i.e. with and without ⁴He detection
 - ratio is the RTPC tracking efficiency

-66

-62

Z-Vertex (cm)

-60

-58

-56

-68

CIENCE

-70

0.8

0.7

0.6

0.5

0.3

-72

RTPC Efficiency

Left **_**

Right

Coherent DVCS analysis

M. Hattawy (ORSAY/ANL)

$$\vec{e}^4 H e \rightarrow e'^4 H e' \gamma$$

- One electron in CLAS, one photon with E>2 GeV in the inner calorimeter
- The recoil α -particles (⁴He) has been detected and identified in RTPC
- Set of cuts on kinematical variables define the exclusivity of the reaction:
 - the coplanarity angle $\Delta \varphi$ between the (γ, γ^*) and $(\gamma^*, {}^4\text{He'})$ planes,
 - the missing energy, mass, and transverse momentum of the $(e'^4He'\gamma)$ system,
 - the missing mass squared of the e'4He' system, and
 - the angle θ between the measured photon and the missing momentum of the e'⁴He' system.

Black - all events, shaded region after all other exclusivity cuts

BSA: coherent DVCS $A_{LU} = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$ $1 < Q^2 < 2.3 \text{ GeV}^2$ $0.05 < -t < 0.2 \text{ GeV}^2$ $0.1 < X_{\rm B} < 0.25$ 0.6 0. ⁴He Q² [GeV²] $Q^2 = 1.143 \text{ GeV}^2$ $Q^2 = 1.423 \text{ GeV}^2$ $Q^2 = 1.902 \text{ GeV}^2$ 0. <mark>∕</mark>†Ì ⁴He 0.1 0.15 0.2 0.25 0.3 X_B x_B= 0.132 х_в= 0.225 х_в= 0.170 Q² [GeV²] -t= 0.08 GeV² -t= 0.094 GeV -t= 0.127 GeV 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 **(deg.) (deg.) (deg.)** $-t [GeV^2]$

S. Stepanyan, NRSHEP, IPN Orsay May 29-31, 2017

CIENCE

\mathfrak{T}_m and \mathfrak{R}_e parts of the Compton Amplitude

Incoherent DVCS

```
\vec{e}^4 H e \rightarrow e' p \gamma X
```

- Detected particles: scattered electron and recoil proton in CLAS, DVCS photon with E>2 GeV in the inner calorimeter
- Exclusivity cuts on kinematical variables, similar to hydrogen-DVCS analysis.

Bound nucleon GPDs

CIENCE

S. Stepanyan, NRSHEP, IPN Orsay May 29-31, 2017

ep γ: Missing E

ep: Missing M²

[GeV]

BSA and Generalized EMC Ratio

- EMC effect: nucleon structure is modified.
- Compare BSA measured in incoherent DVCS with the one measured on the hydrogen target.
- Incoherent BSA is dominated by DVCS off of MF protons (no tagging)

Coherent π^0 Production

```
\vec{e}^4 H e \rightarrow e'^4 H e' \pi^0
```

 Detected particles: scattered electron in CLAS, two photons in the inner calorimeter, the recoil ⁴He is identified in RTPC

S. Stepanyan, NRSHEP, IPN Orsay May 29-31, 2017

 Exclusivity cuts on kinematical variables, similar to coherent-DVCS analysis.

Yellow shaded region - all events Blue shaded region = after all other exclusivity cuts

mas Jefferson National Accelerator Facili

B. Torayev (ODU)

Coherent π^0 Production

Total of ~800 coherent π^0 events.

$$A_{LU}^{\sin(\varphi)} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{1}{P_B} \left(\frac{N^+ - N^-}{N^+ + N^-} \right)$$

$$\Delta A_{LU}^{\sin(\varphi)} = \frac{2}{P_B} \left(\frac{\sqrt{\left(N^- \Delta N^+\right)^2 + \left(N^+ \Delta N^-\right)^2}}{\left(N^+ + N^-\right)^2} \right)$$

 χ^2 and un-binned maximum log-likelihood fits to BSA ϕ -dependence

Incoherent "exclusive" π^0 Production

600

500

400

300

200

100

 $\vec{e}^4 H e \rightarrow e' p \pi^0 X$

-0.20 -0.15 -0.10 -0.05 -0.00 0.05 0.10 0.15

Detected particles: scattered electron and the recoil proton in CLAS, two photons in the inner calorimeter.

Kinematic cuts to optimize signal over background from the fits to the MM-distributions.

Incoherent "semi-exclusive" π^0 Production

 $\vec{e}^4 H e \rightarrow e' N \pi^0 X$

- Detected particles: scattered electron in CLAS, two photons in the inner calorimeter.
- Number of events in each beam helicity and ϕ -bin is extracted from the fit to the MM distribution of $(e'\pi^0)$ assuming $\vec{e}N \rightarrow e'\pi^0 X$

BSA in coherent and in-coherent π^0 production

Note the asymmetry sign change between spin/isospin zero target and the nucleon

CIENCE

Hadronic exchanges in π^0 production

J.M. Laget / Physics Letters B 695 (2011) 199-204

S. Stepanyan, NRSHEP, IPN Orsay May 29-31, 2017

Quark degrees of freedom in π^0 production on ⁴He

The BSA for this process is:

$$A_{LU} \sim \sigma_{LT'} \sim \widetilde{H} * \widetilde{H}_T$$

These GPDs are proportional (normalized) to:

 $\Delta q \cdot \Delta q_T$ where Δq is the polarized PDF and Δq_T is the tensor anomalous moment.

For the proton target, the flavor structure for this process is:

$$2u + d$$

For ⁴He, the flavor structure is u + d. Since Δd and Δu are opposite in sign, the enhancement of the d-quark contribution for ⁴He should decrease the resulting beam-spin asymmetry relative to the proton case. (*Note clear if this is enough to flip the sign*) V. Guzay, private communication

Low energy recoil tagging with CLAS12

New proposal to JLAB PAC45 – very ambitious program tuned for studies of partonic structure of light nuclei and bound nucleons using low energy recoil tagging technique.

Measurement	Particles detected	p range	θ range
Nuclear GPDs	$^{4}\mathrm{He}$	230	$\pi/4 < \theta < \pi/2$ rad
Tagged EMC	р, ³ Н, ³ Не	As low as possible	As close to π as possible
Tagged DVCS	р, ³ Н, ³ Не	As low as possible	As close to π as possible

Summary

- CLAS experiment for coherent photo- and electro-production of the photon and mesons on a spin and isospin zero target, ⁴He, run in 2009
- Scattering of a 6.06 GeV polarized electrons on a 6 atm., 20 cm long ⁴He gas target was used to collect data for DVCS and π^0 electroproproduction
- A low energy recoil detector, a cylindrical RTPC, has been deployed for detection and identification of the recoiling α–particles
- BSA in the fully exclusive final state, for the first time, have been measured in coherent DVCS and π^0 production on ⁴He. Coherent DVCS allows model-independent extraction of the $\mathcal{R}e$ and $\mathfrak{T}m$ parts of Compton amplitude. The BSA of π^0 production has different sign of asymmetry than BSA on the nucleon.
- BSA in incoherent DVCS opens up a new opportunities for studying the partonic structure of bound nucleons through spectator tagging
- A new measurements are planned for CLAS12 using up to 11 GeV longitudinally polarized electron beams, a high pressure gaseous target, and a new low energy recoil detector, ALERT, with much improved PID that is very important for spectator tagging (proposal have been re-submitted to PAC45)

Thanks you

CLAS12 – Design Parameters

Forward Detector		Forward Detector	Central Detector
_	Angular range		
		$5^{\circ} - 40^{\circ}$	35° - 125°
	Photons	$2^{\circ} - 40^{\circ}$	
	Resolution		
	δp/p (%)	< 1 @ 5 GeV/c	< 5 @ 1.5 GeV/c
	δθ (mr)	< 1	< 10 - 20
	Δφ (mr)	< 3	< 5
	Photon detection		
	Energy (MeV)	>150	
	δθ (mr)	4 @ 1 GeV	
	Neutron detection	C	
	N _{eff}	< 0.7 (EC+PCAL)	n.a.
	Particle ID		
	e/π	Full range	
Central Detector	π/p	< 5 GeV/c	< 1.25 GeV/c
	π/K	< 2.6 GeV/c	< 0.65 GeV/c
$L = 10^{35} cm^{-2} s^{-1}$	K/p	< 4 GeV/c	< 1.0 GeV/c
$\mathbf{L} = 10$ cm \mathbf{b}	π(η)→γγ	Full range	

Selection of elastic events

RTPC Efficiency: Detect Elastic ⁴He

- With electron selected, look for RTPC track with matching vertex and elastic angles
 - Each Δ -quantity below has a cut on the others' peaks
 - Resolutions are roughly 8mm, 2°, 3° on z,φ,θ
- Test cut sensitivity, particularly $\Delta \theta$

Target & RTPC assembly for eg6

S. Stepanyan, NRSHEP, IPN Orsay May 29-31, 2017

RTPC calibration

CIENCE

Elastic scattering on ⁴He at 1.2 GeV

