

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy

The HASPECT network

Hadron spectroscopy ingredients

* Experiment
* Theory
* Analysis strategy

* Analysis tools

Hadron spectroscopy ingredients

***** Experiment

- High statistics, high quality data
- Use different probes (hadron/em)
- Loose trigger to record multiple final states
- Thorough investigation of badly known sectors (eg. strangness-rich mesons, quarkonia, ...)
- Access a large kinematic

MesonEx program with CLASI2 at JLab GLUEX in Hall-D at JLab COMPASS @ CERN BES-III, LHCb, Bellell

* Theory

* Analysis strategy

* Analysis tools

Jefferson Lab at 12 GeV

The HASPECT network

Why photoproduction

 \star Photoproduction: exotic J^{PC} are more likely produced by S=1 probe

No spin-flip for exotic quantum number

A. Afanasev and P. Page et al. PR A57 1998 6771 A. Szczepaniak and M. Swat PLB 516 2001 72

 \star Linear polarization acts like a filter to disentangle the production mechanisms and suppress bg

 \star Production rate for exotics is expected comparable as for regular mesons

Quasi-real photoproduction with CLASI2 (Low Q² electron scattering)

$E_{scattered}$	0.5 - 4.5 GeV
θ	$2.5^{o} - 4.5^{o}$
ϕ	0° - 360°
ν	6.5 - 10.5 GeV
Q^2	$0.01 - 0.3 \text{ GeV}^2 (\langle Q^2 \rangle 0.1 \text{ GeV}^2)$
W	3.6 - 4.5 GeV

7

★ Electron scattering at "0" degrees (2.5° - 4.5°)
 ▶ low Q² virtual photon ⇔ real photon

★ Photon tagged by detecting the scattered electron at low angles
 ▶ High energy photons 6.5 < E_g < 10.5 GeV

- Quasi-real photons are linearly polarized
 Polarization ~ 70% 10% (measured event-by-event)
- ★ High Luminosity (unique opportunity to run thin gas target!)
 ▶ Equivalent photon flux N_v ~ 5 10⁸ on 5cm H₂ (L=10³⁵ cm⁻²s⁻¹)

Multiparticle hadronic states detected in CLASI2
 High resolution and excellent PID (kaon identification)

Complementary to Hall-D (GLUEX)

Quasi-real photoproduction with CLASI2 (Low Q² electron scattering)

★ Electron scattering at "0" degrees (2.5° - 4.5°)
 ▶ low Q² virtual photon ⇔ real photon

Photon tagged by detecting the scattered electron at low angles
 High energy photons 6.5 < E_g < 10.5 GeV

Quasi-real photons are linearly polarized
 Polarization ~ 70% - 10% (measured event-by-event)

★ High Luminosity (unique opportunity to run thin gas target!)
 ▶ Equivalent photon flux N_v ~ 5 10⁸ on 5cm H₂ (L=10³⁵ cm⁻²s⁻¹)

Multiparticle hadronic states detected in CLASI2
 High resolution and excellent PID (kaon identification)

CLASI2 ForwardTagger detector ready for installation!

Meson spectroscopy with photons at JLab-12 GeV

- Determination of JPC of meson states requires PWA
- Decay and production of exclusive reactions
- Good acceptance, energy resolution, particle identification

Hadron spectroscopy ingredients

* Experiment

* Theory

- LQCD: the final word (?)
- Effective Models: to interpret the physics meaning of LQCD
- Phenomenological models: to extract information from the data (Regge, Veneziano, duality)
- Theory helps experiments: decay widths, golden channel, ...

JPAC (and twin centers) progresses strategy tools

* Analysis strategy* Analysis tools

The HASPECT network

<u>e () lab12</u>

Gluonic excitation models

Flux tube model

- Gluonic field confined in a tube between q and anti-q
- Linear Regge trajectories
- Hybrid mesons as transverse oscillation of the tube
- Flux-tube breaking give rise to meson decay

Bag model

- Quarks confined inside a cavity
- Full relativistic
- Gluonic excitation: gluonic field modes by boundary conditions

CQM + constituent gluon

- qq + massive transverse quasi-gluon (Jg^{PgCg})
- Gluon adds in relative S-wave to a qq pair is S-wave or P-wave

Lightest multiplet (0, 1, 2)-+, 1--

The HASPECT network

M.Battaglieri - INFN GE

<u>e () lab12</u>

Regge phenomenology in a nut-shell

• Exploit the analytical structure of the amplitude

$$a \xrightarrow{t} c \qquad A(s,t) = 16\pi \sum_{\ell} (2\ell+1)A_{\ell}(t)P_{\ell}(z_t)$$

$$b \xrightarrow{e} d \qquad A(s,t) \propto \sum_{e} \beta_e(t) \frac{s^{\alpha_e(t)}}{\sin \pi \alpha_e(t)}$$
17

 0^{+}

 0^{-}

1- 1^{+}

 0^{+}

 0^{-}

1-1+

• Regge trajectories

$I^{G au\eta}$			$I^{G au\eta}$	
0^{+++}	f	0.5+0.9t	0+	\overline{f}
0+	ω	0.5 + 0.9t	0-+-	$\bar{\omega}$
1^{-++}	a	0.4 + 0.9t	1	ā
1^{+-+}	ρ	0.5+0.9t	1++-	$\bar{\rho}$
0++-	η	$0.7(t-m_{\pi}^2)$	0+-+	$\bar{\eta}$
0	h	$0.7(t-m_{\pi}^2)$	0-++	\bar{h}
1-+-	π	$0.7(t-m_{\pi}^2)$	1+	$\bar{\pi}$
1+	b	$0.7(t-m^2)$	1+++	b

• Implement crossing symmetry

10² Plab (Ge)

-20.8 GeV x10

40.8 GeV x10

- Efficient and theoretically correct way to parametrize Amplitudes
- Good agreement to total xsec, differential xsec, spin observables
- Many different reactions (probes) and channels
- Regge theory can be used to parametrize Amplitudes (resonance and BG)

M.Battaglieri - INFN GE

e.

M.Battaglieri - INFN GE

Hadron spectroscopy ingredients

* Experiment

* Theory

* Analysis strategy

- PWA: Isobar Model, ad-hoc solutions for limited kinematic domain
- PWA: how far can go a model-independent PWA in the real world?
- Multiple channels approach (Q2 as a filter?)
- Spot vs systematic studies
- Could meson decay's studies simplify the analysis?
- Data: CLAS6 (gII, gI2, eXX), CLASI2

JLab Working Groups activity: HASPECT, LMD, CLAS/PANDA, JPAC, ...

* Analysis tools

JLab Working Groups activity

★ HASPECT (HAdron SPEctroscopy CenTer) WG

Stable working group in Genova + satellites
Weekly skype meetings and HASPECT weeks
Analysis of CLAS data and projection on CLASI2

★ LMD (Light Mesons Decay) WG

- Stable working group at JLab
- Involvement of Julich Group
- Interest for a wide community (e+e- colliders)

★ CLAS/PANDA Joint Activity Board

- Mixed committee to explore overlaps and synergies
- light and heavy quark spectroscopy
- complementarity of production/annihilation

★ JPAC (Joint Physics Analysis Center)

- Develop the analysis framework
- Analysis of JLab and world-data
- Progress in amplitude analysis

★ PyPWA project

C.Salgado

Present:

- e+e-: BESIII and KLOE
- B decay: LHCb
- Belle, CLEO, BABAR

Future:

- Photoproduction at JLab:
- p p-bar at GSI: PANDA

<u>ab12</u>

A first attempt ...

MB, R.DeVita A. Szczpaniak et al Phys.Rev.Lett. 102:102001,2009 MB, R.DeVita A. Szczpaniak et al Phys.Rev. D80:072005,2009

$\gamma p \rightarrow p \pi \pi$

 $M(\pi^+\pi^-)$ spectrum below 1.5 GeV:

- P-wave: ρ meson
- D-wave: f₂(1270)
- S-wave: σ, f₀(980) and f₀(1320)

17

$$\langle Y_{\lambda\mu}\rangle(E_{\gamma},t,M) = \frac{1}{\sqrt{4\pi}}\int d\Omega_{\pi}\frac{d\sigma}{dtdMd\Omega_{\pi}}Y_{\lambda\mu}(\Omega_{\pi})$$

Amplitude parametrization (Dispersion relation)Related to ππ scattering matrix: phase-shift, inelasticity, S-P-D-Famplitude in 0.4 GeV < M_π < 1.4 GeV</td>

$$a_{lm,I}(s) = \frac{1}{2} [I + S_{lm,I}(s)] \tilde{a}_{lm,I}(s) - \frac{1}{\pi} D_{lm,I}^{-1}(s) PV \int_{s_{th}} ds' \frac{N_{lm,I}(s')\rho(s')\tilde{a}_{lm,I}(s')}{s' - s}$$

$$\tilde{a}_{lm,I} = [\mathcal{A} + \mathcal{B}s + \mathcal{C}s^2 + \cdots][k]$$

Expanded in a Taylor series: coefficient fit to the experimental moment

First observation of the $f_0(980)$ in a photoproduction experiment

Hadron Spectroscopy at CLAS and CLAS12

eelab12

the follow-up ...

$\gamma p \rightarrow p k k$

- S.Lombardo (IU/Cornell)
- Full analysis from gII CLAS6 data set
- S-P interference in 2k system

Method:

- Extract moments from data
- Parametrise amplitudes with a model:
 - P-wave: pomeron, s-wave: rho, omg t-exch

• Fit moments to obtain PW cross sections

2k amplitudes provided by JPAC

towards a full PWA

$\gamma p \rightarrow p k k$

- I.Stankovic (U Edinburgh)
- Full PWA using the same CLAS6 -
- gll data set

Procedure:

- Extract moments from data in a model independent way and compare to the previous CLAS6 analysis
- Test the fit procedure on pseudo data
- Run the full PWA to extract the dominant and sub-leading waves

Photoproduction of K⁺ K⁻ meson pairs on the proton

S. Lombardo,³⁵ HASPECT WORKING GROUP MEMBERS,³⁵ K. P. Adhikari,³⁵ M.J. Amaryan,³⁵ M. Anghinolfi,¹ H. Baghdasaryan,⁴⁵ I. Bedlinskiy,²² M. Bellis,⁷ L. Bibrzycki,²⁹ A.S. Biselli,^{13,36} C. Bookwalter,¹⁵ D. Branford,¹² W.J. Briscoe,¹⁶ V.D. Burkert,⁴² S.L. Careccia,³⁵ J. S. Carman,⁴² E. Clinton,²⁸ P.L. Cole,¹⁸ P. Collins,⁴ V. Crede,¹⁵ D. Dale,¹⁸ A. D'Angelo,^{20,38} A. Daniel[?] Dashyan,⁴⁷ E. De Sanctis,¹⁹ A. Deur,⁴² v,¹ H. Egiyan,^{30, 42} P. Eugenio,¹⁵ S. Dhamija,¹⁴ C. Djalali,⁴¹ G.E. Dodge,³⁵ D. Doughty,^{10,4°} G. Fedotov,⁴⁰ S. Fegan,¹⁷ A. Fradi,²¹ M.Y. Gabrielyan,¹⁴ L. n,⁹ A. Gasparian,³³ G.P. Gilfoyle,³⁷ K.L. Giovanetti,²⁴ F.X. Girod,^{9,*} O. Glamazdin,²⁶ J. etz,⁵ W. Gohn,¹¹ E. Golovatch,^{40,1} 1,³ H. Hakobyan,^{44,47} C. Hanretty,¹⁵ R.W. Gothe,⁴¹ K.A. Griffioen,⁴⁶ M. Guidal,²¹ L. N. Hassall,¹⁷ K. Hicks,³⁴ M. Holtrop,³⁰ C.E. Hyde,³⁵ .d. Ireland,¹⁷ E.L. Isupov,⁴⁰ J.R. Johnstone,¹⁷ K. Joo,¹¹ D. Keller,³⁴ M. Khandaker,³¹ P. V .im,²⁷ A. Klein,³⁵ F.J. Klein,⁸ M. Kossov,²² A. Kubarovsky,³⁵ V. Kubarovsky,⁴² S.V . Kuznetsov,²⁷ J.M. Laget,^{42,9} L. Lesniak,²⁹ K. Livingston,¹⁷ H.Y. Lu,⁴¹ M. Mayer,³ n,⁷ B. McKinnon,¹⁷ C.A. Meyer,⁷ K. Mikhailov,²² T Mineeva,¹¹ M. Mirazita,¹⁹ V. Moch ,^{40, 42} K. Moriya,⁷ E. Munevar,¹⁶ P. Nadel-Turonski,⁸ I. Nakagawa,³⁹ C.S. Nepali,³⁵ S. Nir cu,²⁴ M.R. Niroula,³⁵ M. Osipenko,^{1,40} A.I. Ostrovidov,¹⁵ K. Park, 41, 27, * S. Park, 15 M asyuk,⁴ S.Anefalos Pereira,¹⁹ S. Pisano,²¹ N. Pivnyuk,²² O. Pogorelko,²² S. Pozdniako Y. Prok,^{45,‡} D. Protopopescu,¹⁷ B.A. Raue,^{14,42} G. Ricco,⁴ r. Rossi,¹⁹ F. Sabatié,⁹ M.S. Saini,¹⁵ C. Salgado,³¹ D. Schott,¹⁴ M. Ripani,¹ B.G. Ritchie,⁴ G. . Sharabian,⁴² D.I. Sober,⁸ D. Sokhan,¹² A. Stavinsky,²² S. Stepanyan,⁴² R.A. Schumacher,⁷ H. Seraydaryan,³⁵ S. S. Stepanyan,²⁷ P. Stoler,³⁶ I.I. Strakovsky,¹⁶ S. Strauch,^{41,16} M. Taiuti,¹ D.J. Tedeschi,⁴¹ A. Teymurazyan,²⁵ S. Tkachenko,³⁵ M. Ungaro,^{11,36} M.F. Vineyard,⁴³ A.V. Vlassov,²² D.P. Watts,^{17,§} L.B. Weinstein,³⁵ D.P. Weygand,⁴² M. Williams,⁷ E. Wolin,⁴² M.H. Wood,⁴¹ L. Zana,³⁰ J. Zhang,³⁵ B. Zhao,^{11, ¶} and Z.W. Zhao⁴¹ (The CLAS Collaboration)

19

e. 2 Lab 12

Needs to have higher energy and statistics and test other final states → CLASI2

The HASPECT network

1600

2000

1800

1000

1200

1400

 $M(\pi^{+}\pi^{+}\pi^{-})$ (MeV/c²)

1600

20

18.0

2000

1000

1200

1400

 $M(\pi^{+}\pi^{+}\pi^{-})$ (MeV/c²)

PWA with CLASI2 (fastMC)

D.Glazier (U of Glasgow)

$\gamma \, p \rightarrow \, n \; \pi^{\scriptscriptstyle +} \; \pi^{\scriptscriptstyle -} \; \pi^{\scriptscriptstyle -}$

- The process is described as sum of 8 isobar channels:
 - $a_2 \rightarrow \rho \pi$ (D-wave)
 - $a_1 \rightarrow \rho \pi \text{ (S-wave)}$
 - $a_1 \rightarrow \rho \ \pi \ (D-wave)$
 - $\pi_2 \rightarrow \rho \ \pi \ (P-wave)$
 - $\pi_2 \rightarrow \rho \ \pi \ (F-wave)$
 - $\pi_2 \rightarrow f_2 \pi(S\text{-wave})$
 - $\pi_2 \rightarrow f_2 \pi$ (D-wave)
 - $\pi 1 \rightarrow \rho \pi$ (P-wave) (exotic)
- Amplitudes calculated by A.Szczepaniak and P.Guo
- CLASI2 acceptance projected and fitted
- PWA is stable against CLASI2 acceptance/ resolution distortion

PWA in CLASI2 is feasible!

The $\eta\pi$ in CLAS-g12

γ p → **p** η π

• A.Celentano (INFN-GE) PhD Thesis

Amplitudes provided by V.Mathieu (ECT*) and A.Szczepaniak (IU&JLab)
Preliminary analysis on CLAS6 data to fix

parameters

- Full projection on CLASI2 and PWA
- Sensitivity for P-wave > 5% a₂(1320)

Needs higher energy, higher statistics -> CLASI2

PWA with (realistic simulation of) CLASI2

$e p \rightarrow e' p \pi 0 (\gamma p \rightarrow p \pi 0)$

- S.Dihel (U Giessen)
- Full CLASI2 GEANT4 simulation
- Full reconstruction
- Electroproduction amplitudes provided by JPAC (V.Mathieu)
- AMPTOOLS
- Electron detected at small angles in the CLASI2-FT

23

High level physics analysis is starting soon!

- γ_v Linear polarisation: $\sigma'_{TT}(\Sigma)$
- Xsection
- Large-t behaviour dσ/dt(90^O)
- e- polarisation: σ_{TL} (no available in photoproduction!)
- Full PWA

The HASPECT network

A new (old?) approach: Veneziano amplitudes

B₄ amplitude A.Szczepaniak & M.Pennington extension of Veneziano amplitude (arXiv:1403.5782)

$$A(s,t) = \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s) - \alpha(t))} \qquad \alpha(s) = a + bs$$

Resonances couplings, β , should depend on final state particles: a linear superposition of Veneziano amplitudes can be used to suppress or enhance individual resonances or trajectories

- Correct analytic structure (poles)
- Proper asymptotic behaviour (Regge)

Combinations of $A_{n,m}$ that result in an amplitude containing only a finite number of poles

$$A_{n,m}(s,t) = \frac{\Gamma(n-\alpha_s)\Gamma(n-\alpha_t)}{\Gamma(n+m-\alpha_s-\alpha_t)}$$

e.g. keeping only the pole at $\alpha_s = I$

 $A_1(s,t) = c_{1,1} \frac{2 - \alpha_s - \alpha_t}{(1 - \alpha_s)(1 - \alpha_t)}$

e.g. $\omega \to 3\pi$: Bose statistics and isospin conservation require no spin-even resonances allowed

M.Battaglieri - INFN GE

A new (old?) approach: Veneziano amplitudes

$\gamma p \rightarrow p \omega \rightarrow p \pi \pi \pi$

- A. Celentano (INFN-GE)
- Decay decouples production from genuine meson-meson interaction
- ω decay M($\pi^+\pi^-$) <0.45 GeV
- 3-body effects

Analysis in collaboration with JPAC

$$\begin{split} A_{\lambda} &= \varepsilon_{\mu\nu\alpha\beta} \, p_{+}^{\nu} p_{-}^{\alpha} p_{0}^{\beta} \varepsilon_{\lambda}^{\mu} \, A(s,t,u) \\ I &= \sum_{\lambda,\lambda'} A_{\lambda}^{*} \rho_{\lambda'}^{\lambda} A_{\lambda'} = K^{2} W_{\rho}(\theta,\phi) |A|^{2} \\ K^{2} &= s t \, u - m^{2} (M^{2} - m^{2})^{2} = |\vec{p_{a}} \times \vec{p_{b}}|^{2} \\ W_{\rho}(\theta,\phi) : \text{ Spin density matrix} \end{split}$$

$\begin{array}{c} Y p \rightarrow p \ \eta' \rightarrow p \ \pi \ \pi \ \eta \\ \rightarrow p \ f_1(1285) \ \eta \end{array}$

- A. Rizzo (INFN-RM2)
- $(\pi\eta)$ invariant mass spectrum
- η' decay Μ(πη) <0.8 GeV

amplitudes provided by JPAC

25

η' meson

Longitudinal analysis

Separation between beam and target fragmentations

D.Glazier (U of Glasgow)

3-body final state has 2 independent degrees of freedon Define these as radius r and angle ω Define "positive, negative" for each q_i

E conservation: allowed region is bounded

26

<u>e () lab12</u>

0.6 0.6 0.4 0.2 1 1.2 1.4 1.5 1.8 2 22 2.4 2.6 2.8 3

M(π+π-) V M(pπ-)TwoPionLPS3.50_

The HASPECT network

M(π+π-) V M(pπ-)TwoPionLPS1.50

M(π+π-) V M(pπ-)TwoPionLPS4.50_

van Hove plots for $\gamma p \rightarrow p \pi \pi$

- Sum Topologies, Split into LP Sector
- Baryon/Meson Masses : M(π+π-) v M(π-p)
- Named particles are travelling forward

M(π+π-) V M(pπ-)TwoPionLPS5.50_

M.Battaglieri - INFN GE

Transition form factor evolution in Q² as a filter?

Electro-production can be used to explore the hadron structure at different wavelengths (Q2)

Electro-couplings of "Roper" N(1440)1/2+

nπ+ **ck** $A_{1/2}(10^{3} GeV^{-1/2})$ S₁₁₂ (10⁻³GeV^{1/2}) 50 60 40 20 30faster than for ordinary 20 0 a³G -20 10 because of extra gluenπ¹ -40 component in valence q³G -60 -10 -80 ^E 2 2 3 O^2 (GeV²) Q^2 (GeV²)

A suppressed longitudinal amplitude $S_{1/2}(Q_2)$ in comparison with transverse electro-excitation amplitude Q₃G Q₃G

• NTT and NTTT give consistent results

A drop of the

transverse helicity

amplitudes $A_{1/2}(Q_2)$

three quark states,

structure

- $A_{1/2}$ changes sign and has large magnitude at high Q^2
- QM fails to reproduce low Q² behavior, LFQM better at large Q²
- Both $A_{1/2}(Q^2)$ and $S_{1/2}(Q^2)$ inconsistent with hybrid model prediction

CLASI2 will map out the full meson/baryon spectrum and its evolution in Q2

The HASPECT network

Hadron spectroscopy ingredients

* Experiment

* Theory

* Analysis strategy

* Analysis tools

• HASPECT analysis framework

- HASPECT tools: AmpTools, EDGen
- CLAS6: data mining and data preservation
- CLASI2 simulations and full reconstruction framework

The HASPECT tools for MesonEx

Getting ready for the challenge: HASPECT tools

Set up a common analysis framework
Grab theoretical amplitude from JPAC
Define a list of *benchmark* and *golden channels* accessible at limited (6 GeV) energy:

 $\begin{array}{c} \gamma p \rightarrow N \pi \pi \\ \gamma p \rightarrow N K K \\ \gamma p \rightarrow N \eta \pi \\ \gamma p \rightarrow N \eta \pi \\ \gamma p \rightarrow N \pi \pi \pi \\ \gamma p \rightarrow N \eta \pi \pi \\ \gamma p \rightarrow N \eta \pi^{+} \pi^{-} \pi^{-} K^{+} \\ \gamma p \rightarrow N \varphi \pi \\ \gamma p \rightarrow N \varphi \eta \\ \gamma p \rightarrow N \omega \pi^{+} \pi^{-} \end{array}$ $\begin{array}{c} \star \text{ test the analysis machinery on} \\ \mathsf{CLAS6 data} \\ \star \text{ project to CLAS12} \end{array}$

 Theoretical support: JPAC (US), L.Bibrzycki (Krakow), (Krakow), E.Santopinto (INFN-GE)

R.Kaminski

• Experimental Analysis:

A.Celentano, (INFN-GE), S.Dihel (Giessen), S.Fegan (Mainz), A. Filippi (INFN-TO), D.Glazier (Glasgow), S.Hughes (Edinburgh), K.Hicks (OhioU), S.Lombardo (Cornell), A.Rizzo (RomaTV), I Stankovic (Edinburgh), L.Zana (Edinburgh)

Act locally but think globally! THE GEORGE INDIANA UNIVERSITY Jefferson Lab WASHINGTON UNIVERSITY BLOOMINGTON celerator Facility WASHINGTON, DO Global strategy: Joint Physics Analysis Center *Creation of twin and parallel centers for both HOME PROJECTS PUBLICATIONS LINKS analysis and theory development *Collaboration and exchanges: personnel, short U.S. DEPARTMENT OF National Science NERGY Foundation visits, ... JPAC acknowledges support from DOE and NSF *Coordination via Joint Physics Analysis Center NEWS *Creation of a "Hadron spectrum" working group V.Mathieu November 2016: • The $\gamma p \rightarrow \eta p$ page is online. June 2016: • The $\gamma p \rightarrow J/\psi p$ page is online. Glasgow • The πN page is online. GSI Edinburgh Darmstadt October 2015: Julich BESIII The KN page is online. Indiana University GW Beiiing BELLE TUM May 2015: Munchen Beijing LHCb, COMPASS The website is launched. merica Asia • The $\gamma p \rightarrow \pi^0 p$ page is online. **CERN** • The $\omega, \phi \to 3\pi$ page is online. KLOE LNF HASPECT \circ The $\eta ightarrow 3\pi$ page is online North Pa Ocean Genova ILab Ocear Physics Analysis Africa Center Common funding plans: • European-FP7 (EU calls and local): South Indian Ocean HadronS-HPH, Synergy grants America South Pacific • DOE-Topical -collaboration Australia South Atlantic Ocean proposals Ocean Canaletto/LiQuHas (Italy/Polland)

Conclusions

* Comprehensive meson spectroscopy program at JLab (Gluex & MesonEx)

* Exotics and strangeness-rich mesons search with CLASI2 detector exploiting excellent resolution and particle ID

*Bremsstrahlung and Low Q^2 electron scattering to produce a high intensity, linear polarized, real (Hall-D) and quasi-real (Hall-B) photon beam

* Expected abundant and precise data requires a solid PWA analysis framework

* The strategy: build the analysis framework in advance, test it on CLAS6 data and project on CLAS12 to be ready on day-1

* Continuous interaction between JLab WGs (HASPECT, LMD, JPAC) and the other centers (BES, GSI, Julich) to meet the challenge

High-performance detector, high intensity e/γ beams, strong analysis framework are the ingredients to make CLASI2 a leading facility in modern hadron spectroscopy

Backup slides