Deeply Virtual Compton Scattering with a Positron Beam

F.-X. Girod

Jefferson Laboratory

Sep 12th 2017

cla

Jefferson Lab

🍘 🖓 FX Girod

DVCS with positrons

Outline

- 2 Beam requirements in Hall B
- Hall B Published Data
- 4 Hall B Future Measurements
- 5 Projected Impact on GPD Extractions
- **6** Summary and Outlook

Generalized Parton Distributions

$$\begin{array}{l} \gamma^* p \rightarrow \gamma p', \ \rho p', \ \omega p', \ \phi p' \\ \text{Bjorken regime} : \\ Q^2 \rightarrow \infty, \ x_B \text{ fixed} \\ t \text{ fixed } \ll Q^2 \ , \ \xi \rightarrow \frac{x_B}{2-x_B} \end{array}$$

$$\begin{aligned} & \frac{P^{+}}{2\pi} \int dy^{-} e^{i \mathbf{x} P^{+} \mathbf{y}^{-}} \langle p' | \bar{\psi}_{q}(0) \gamma^{+}(1+\gamma^{5}) \psi(y) | p \rangle \\ &= \bar{N}(p') \left[H^{q}(\mathbf{x},\xi,t) \gamma^{+} + E^{q}(\mathbf{x},\xi,t) i \sigma^{+\nu} \frac{\Delta_{\nu}}{2M} \right] \end{aligned}$$

+
$$\tilde{H}^{q}(x,\xi,t)\gamma^{+}\gamma^{5} + \tilde{E}^{q}(x,\xi,t)\gamma^{5}\frac{\Delta^{+}}{2M}\right]N(p)$$

close

Jefferson Lab

spin	N no flip	N flip		
q no flip	н	Е		
q flip	Ĥ	Ê		

3-D Imaging conjointly in transverse impact parameter and longitudinal momentum

GPDs and Transverse Imaging (x_B, t)

$$q_{\mathbf{X}}(\mathbf{x}, \vec{b}_{\perp}) = \int \frac{\mathrm{d}^2 \vec{\Delta}_{\perp}}{(2\pi)^2} \left[H^{\mathbf{q}}(\mathbf{x}, 0, t) - \frac{E^{\mathbf{q}}(\mathbf{x}, 0, t)}{2M} \frac{\partial}{\partial b_{\mathbf{y}}} \right] \mathrm{e}^{-i\vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}}$$

Lattice calculation

🍘 🖓 FX Girod

DVCS with positrons

09/12/17

4/ 28

Jefferson Lab

class

Energy Momentum Tensor (x, ξ)

Form Factors accessed via second x-moments :

$$\langle p' | \hat{\mathcal{T}}^{q}_{\mu\nu} | p \rangle = \bar{N}(p') \left[\frac{M_{2}^{q}(t)}{M} \frac{P_{\mu}P_{\nu}}{M} + J^{q}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + d_{1}^{q}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{5M} \right] N(p)$$

Angular momentum distribution

$$J^{q}(t) = \frac{1}{2} \int_{-1}^{1} dx \, x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

Mass and force/pressure distributions

$$M_{2}^{q}(t) + \frac{4}{5} d_{1}^{q}(t) \xi^{2} = \frac{1}{2} \int_{-1}^{1} dx \, x H^{q}(x,\xi,t)$$

$$d_1^q(t) = 15M \int d^3 \vec{r} \, \frac{j_0(r\sqrt{-t})}{2t} p(r)$$

09/12/17

Deeply Virtual Compton Scattering

The cleanest GPD probe at low and medium energies

DVCS with positrons

09/12/17

6/

6/28

Close

Observables sensitivities to GPD

 $\rightarrow d_1(t)$

A global analysis is needed to fully disentangle GPDs A_C gives access to $d_1(t)$ through a direct separation of ReH

7/28

Jefferson Lab

close

Dispersion and the DVCS Amplitude

Analyticity and Unitarity applied to the Compton Amplitude

$$A(\xi,t) = \int dx \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right) H(x,\xi,t)$$

give the once subtracted fixed-t dispersion relation

$$\mathsf{Re}\mathcal{H}(\xi,t) = \mathcal{D}(\xi,t) + \mathcal{P}\mathcal{V}\int \mathsf{d}x \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right)\mathsf{Im}\mathcal{H}(\xi,t)$$

Where
$$\operatorname{Im}\mathcal{H}(\xi,t) = \pi H(\xi,\xi,t)$$
 and $\operatorname{Re}\mathcal{H}(\xi,t) = \mathcal{PV}\int_{-1}^{1} dx \frac{H(x,\xi,t)}{x-\xi}$

The subtraction constant is called the D-term and its Gegenbauer expansion is linked to the Energy Momentum Tensor:

$$D(\xi,t) = (1-\xi^2) \left[\frac{d_1(t)C_1^{3/2}(\xi) + d_3(t)C_3^{3/2}(\xi) + d_5(t)C_5^{3/2}(\xi) + \cdots \right]$$

Calculations in the Chiral Quark Soliton Model indicate that :

DVCS with positrons

JA FX Girod

 $d_1\approx -4.0$, $d_3\approx -1.2$, $d_5\approx -0.4$ with various uncertainties, including the scale

CIQ

Jefferson Lab

8/28

A measurement of the beam charge asymetry A_C gives direct access to the D-term

Beam requirements in Hall B

Hall B Beamline Design Parameters

Parameter	Design Value (?)
Energy	Up to 11 GeV
Energy spread	Better than 0.1%
Beam current	Up to 800 nA
Current measurement	Better than 1%
Helicity correlated	
charge asymmetry	Less than 0.1%
Beam polarization	
measurement	Better than 2.5% (relative)
Beam spot size	Smaller than 400 μ m
Spot/Tail ratio	Better than 10 ⁴
Beam position	Measured and stable better than 100 μ m
Emittance	$\epsilon <$ 10 nm-rad

Hall B Published Data

DVCS Beam Spin Asymmetry

$F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$

6 GeV

Precision in a large phase-space (x_B, Q^2, t) Qualitative model agreement quantitative constraints on parameters

Change of *t*-slopes across *x*_{*B*} Nucleon size change

DVCS Unpolarized Cross-Sections 6 GeV

Compton Form Factors

6 GeV

The t-slope becomes flatter with increasing x_B:

valence quarks (higher x_B) at the center of the nucleon and sea quarks (small x_B) at its periphery

09/12/17

14/28

close

Target Longitudinal Spin DVCS 6 GeV

FX Girod

DVCS with positrons

09/12/17

Model independent extraction

GPD dependencies versus x_B mirror their respective ordinary PDFs

```
\tilde{H} and H \leftrightarrow \Delta q(x) and q(x)
```

Change of t-slope vs x_B less for $\Delta q(x)$ than for q(x)

Different spatial distributions of Axial charge vs EM charge

DVCS with positrons

09/12/17

16/28

6 GeV

Hall B Future Measurements

CLAS12 GPD program

Number	Title	Contact	Days	Energy	Target
E12-06-108	Hard Exclusive Electroproduction of π^{0} and η	Kubarovski	80	11	IH ₂
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	80	11	IH ₂
E12-12-001	Timelike Compton Scat. & J/Ψ prod. in e ⁺ e [−]	Nadel-Turonski	120	11	IH ₂
E12-12-007	Exclusive ϕ meson electroproduction	FXG	60	11	IH ₂
E12-11-003	DVCS on Neutron Target	Niccolai	90	11	ID ₂
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	120	11	NH3
C12-12-010	DVCS with a transverse target	Elouadrhiri	110	11	HD-ice
E12-16-010	DVCS with CLAS12 at 6.6 GeV and 8.8 GeV	Elouadrhiri	50+50	6.6 & 8.8	IH ₂

Proton BSA DVCS ALU

E12-06-009

JA FX Girod

DVCS with positrons

09/12/17

19/28

close

Proton BSA DVCS ALU

E12-06-009

80 days @ $\mathcal{L} = 10^{35}$ cm⁻²s⁻¹ with 85% polarized beam

$$A_{LU} \propto F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$$

··· ··· · ··· ··· ··· ···

Beam Spin Asymmetries ϕ dependence

Statistical uncertainties : from 1 % (low Q^2) to 10 % (high Q^2)

Unprecedented statistics over the full ϕ range up to high x = 0.6

close

Jefferson Lab

SA FX Girod

Proton DVCS TSA AUL

E12-06-009

120 days @ $\mathcal{L}=2\times 10^{35}~\text{cm}^{-2}\text{s}^{-1}$ with 80% polarized NH_3

$$A_{UL} \propto F_1 \frac{\tilde{\mathcal{H}}}{\mathcal{H}} + \xi G_M \left(\mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right) - \cdots$$

Target Spin Asymmetries ϕ dependence

Statistical uncertainties : from 2 % (low Q^2) to 30 % (high Q^2)

Unprecedented statistics over the full ϕ range up to high x = 0.6

close

Jefferson Lab

09/12/17

Proton DVCS TSA AUL

E12-06-009

120 days @ $\mathcal{L}=2\times 10^{35}~\text{cm}^{-2}\text{s}^{-1}$ with 80% polarized NH_3

 $A_{UL} \propto F_1 \frac{\tilde{\mathcal{H}}}{\mathcal{H}} + \xi G_M \left(\mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right) - \cdots$

Target Spin Asymmetries ϕ dependence

Statistical uncertainties : from 2 % (low Q^2) to 30 % (high Q^2)

Unprecedented statistics over the full ϕ range up to high x = 0.6

close

Jefferson Lab

Proton DVCS TSA AUL

E12-06-009

Jefferson Lab

close

120 days @ $\mathcal{L}=2\times 10^{35}~\text{cm}^{-2}\text{s}^{-1}$ with 80% polarized NH_3

$$A_{UL} \propto F_1 \frac{\tilde{\mathcal{H}}}{\mathcal{H}} + \xi G_M \left(\mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right) - \cdots$$

DVCS with positrons

09/12/17

Gluons at large x

E12-12-007

• Large glue density at x > 0.1

PDF from global fits (F_2 evolution, ν_{DIS} , jets)

Gluons carry more than 30% of the momentum for 0.1 < x

• 3D imaging of the nucleon

spatial distribution of valence quarks : elastic scattering, DVCS, ...

Nucleon gluonic radius ? exclusive ϕ

09/12/17

Extraction of gluonic profiles

DVCS with positrons

JA FX Girod

Longitudinal cross-section

Corresponding sensitivity in transverse position space

$$b = 1/\sqrt{-t}$$

Error propagation study Skewness $\xi \neq 0$ neglected

close

Jefferson Lab

22/28

Projected Impact on GPD Extractions

Projected Impact on GPD Extraction

Using simulated data based on VGG model. Input GPD H extracted with good accuracy

09/12/17

Projected Impact on GPD Extraction

Using simulated data based on VGG model. Input GPD H extracted with good accuracy

09/12/17

Projected Impact on GPD Extraction

Using simulated data based on VGG model. Input GPD H extracted with good accuracy

09/12/17

Projection for the Nucleon transverse profile

Precision tomography in the valence region

class

Global Fits to extract the D-term

Beam Spin Asymmetries

$$Im \mathcal{H}(\xi, t) = \frac{r}{1+x} \left(\frac{2\xi}{1+\xi}\right)^{-\alpha(t)} \left(\frac{1-\xi}{1+\xi}\right)^{b} \left(\frac{1-\xi}{1+\xi} \frac{t}{M^{2}}\right)^{-1}$$

Unpolarized cross-sections Use dispersion relation:

$$\mathsf{Re}\mathcal{H}(\xi,t) = D + \mathcal{P}\int\mathsf{d}x\left(rac{1}{\xi-x} - rac{1}{\xi+x}
ight)\mathsf{Im}\mathcal{H}(\xi,t)$$

pure Bethe-Heitler local fit + uncertainty range resulting global fit

DVCS with positrons

09/12/17

D-term and Pressure distribution

$$D^{q}(\frac{x}{\xi}, t) = \left(1 - \frac{x^{2}}{\xi^{2}}\right) \left[d_{1}^{q}(t)C_{1}^{3/2}(\frac{x}{\xi}) + d_{3}^{q}(t)C_{3}^{3/2}(\frac{x}{\xi}) + \cdots\right]$$

t-dependence of the D-term :

Dipole gives singular pressure at r = 0Quadrupole implied by counting rules? Exponential?

Resulting pressure distribution

. . .

Stability condition : $\int_{0}^{\infty} dt r^2 p(r) = 0$ World data fit CLAS 6 GeV data Projected CLAS12 data

🍘 📢 FX Girod

DVCS with positrons

09/12/17

DVCS with positrons

- Partonic Transverse Imaging and Energy Momentum Tensor
- First Generation of Experiments succesful
- 12 GeV era already underway
- Extraction frameworks established
- Challenges ahead for precision measurements
- A positron beam allows a straightforward clean separation of the BH/DVCS interference
- Invaluable handle on systematics on a novel approach to confinement

DVCS with positrons

09/12/17

28/28

cla