

Investigation of the Hadronic Decay $\eta \rightarrow \pi^+ \pi^- \pi^0$ with CLAS

01.02.2017 | 7th Workshop of the APS Topical Group Hadronic Physics 2017 Institute for Nuclear Physics - Jülich Research Center

Properties of the η -meson			
	$m_\eta \; [{ m GeV/c^2}]$	0.5478	
	$\Gamma_{\eta} \; [\text{keV}]$	(1.31 ± 0.05)	
	$\bar{\tau}$ [s]	$5 \cdot 10^{-19}$	
	J ^{PC}	0-+	

- The η -meson is a C-, P-, G- and CP- eigenstate
- All strong and electromagnetic decays are forbidden to first order
- Access to rare decay processes

Properties of the η -meson			
$m_\eta \; [{ m GeV/c^2}]$	0.5478		
$\Gamma_{\eta} \; [\text{keV}]$	(1.31 ± 0.05)		
$\bar{\tau}$ [s]	$5 \cdot 10^{-19}$		
J ^{PC}	0-+		
	$ \begin{array}{c c} \text{s of the } \eta\text{-meson} \\ \hline m_{\eta} \left[\text{GeV}/\text{c}^2 \right] \\ \hline \Gamma_{\eta} \left[\text{keV} \right] \\ \hline \bar{\tau} \left[\text{s} \right] \\ \hline \int_{J} PC \end{array} $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

- The η-meson is a C-, P-, G- and CP- eigenstate
- All strong and electromagnetic decays are forbidden to first order
- Access to rare decay processes

01.02.2017

Properties of the η -meson			
	$m_\eta \; [{ m GeV/c^2}]$	0.5478	
	$\Gamma_{\eta} \; [\text{keV}]$	(1.31 ± 0.05)	
	$\bar{\tau}$ [s]	$5 \cdot 10^{-19}$	
	J ^{PC}	0-+	

- The η -meson is a C-, P-, G- and CP- eigenstate
- All strong and electromagnetic decays are forbidden to first order
- Access to rare decay processes

01.02.2017

Properties of the η -meson			
	$m_\eta \; [{ m GeV/c^2}]$	0.5478	
	$\Gamma_{\eta} \; [\text{keV}]$	(1.31 ± 0.05)	
	$\bar{\tau}$ [s]	$5 \cdot 10^{-19}$	
	J ^{PC}	0-+	

- The η -meson is a C-, P-, G- and CP- eigenstate
- All strong and electromagnetic decays are forbidden to first order
- Access to rare decay processes

Focus of this Talk

01.02.2017

Decay Dynamics of $\eta \to \pi^+\pi^-\pi^0$

System	Isospin State $ I, I_z\rangle$	C-Eigenvalue	G-Eigenvalue
η	0,0 angle	+1	+1
$(\pi^{+}\pi^{-}\pi^{0})$	0,0 angle	-1	-1
$(\pi^+\pi^-\pi^0)$	1,0>	+1	-1

- Decay $\eta \to \pi^+ \pi^- \pi^0$ is G-violating \Rightarrow Forbidden to first order
- Electromagnetic contributions found to be small ⇒ Isospin-violation ⇒ C-conservation
- Decay width: $\Gamma \propto Q^{-4}$

with: $Q^2 = \left(\frac{m_s}{m_d}\right)^2 \times \left[1 - \left(\frac{m_u}{m_d}\right)^2\right]^{-1}$

 \Rightarrow Determine decay width $\Gamma \Rightarrow$ Access to quark mass ratio

a) Measure
$$\Gamma(\eta \to \pi^+ \pi^- \pi^0)$$
, e.g. via $\frac{\Gamma(\eta \to \pi^+ \pi^- \pi^0)}{\Gamma(\eta \to \gamma \gamma)}$

а

Dalitz Plot Analysis of $\eta \rightarrow \pi^+\pi^-\pi^0$

- Describe three body decay by two variables (here: X and Y)
- Complete information about decay dynamics
- Parameterise decay width Γ : $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^2Y + ...)$
- $c \neq 0$ and $e \neq 0$:
 - i) Imply C-violation
 - ii) Cause asymmetries within the Dalitz Plot
- Compare Dalitz Plot parameters a,b,d,f from experiment and theory

Recent Measurements I

Most recent result from the KLOE-Collaboration:^(f)

- η -Mesons produced via: $e^+e^- \rightarrow \Phi \rightarrow \eta\gamma$
- $\approx 4.7 \cdot 10^6 \ \eta \rightarrow \pi^+ \pi^- \pi^0$ events in the final data sample
- Fit function: Norm \times (1 + aY + bY + cX + dX² + eXY + fY³)
- Determined asymmetries of the Dalitz Plot \Rightarrow Consistent with zero \Rightarrow No C-violation

(f) KLOE coll., JHEP, 019, (2016)

Recent Measurements II

Result from the WASA-at-COSY Collaboration:(d)

- η -Mesons produced via: $pd \rightarrow {}^{3}\text{He}\eta$
- \approx 120 k $\eta \rightarrow \pi^+ \pi^- \pi^0$ events in the final data sample
- Translate each pair (X,Y) into a global bin i(X, Y)
 - \rightarrow Obtain one dimensional Dalitz Plot
- Fit function: Norm \times (1 + aY + bY + cX + dX² + eXY + fY³)

(d) WASA-at-COSY coll., Phys. Rev., C90(045207), 2014

Recent Measurements and Theoretical Predictions

Parameter:		— a	b	d	f
Exp.	KLOE (08) ^(a)	1.090(5)(+8)	0.124(6)(10)	0.057(6)(⁺⁷ ₋₁₆)	0.14(1)(2)
	WASA ^(d)	1.144(18)	0.219(19)(47)	0.086(18)(15)	0.115(37)
	KLOE (16) ^(f)	1.104(3)(2)	$0.142(3)(^{5}_{-4})$	0.073(3)(⁺⁴ ₋₃)	$0.154(6)(^{+4}_{-5})$
Theor.	ChPT (NNLO) ^(b)	1.271(75)	0.394(102)	0.055(57)	0.025(160)
	NREFT ^(c)	1.213(14)	0.308(23)	0.050(3)	0.083(19)
	PWA ^(e)	1.116(32)	0.188(12)	0.063(4)	0.091(3)
(a) KLOE coll. JHEP. 05. (2008) (b) J. Bijnens and K. Ghorbani. JHEP. 11. (2007) (c) S- P. Schneider et al. JHEP. 026				al. JHEP. 028. (2011)	

(a) KLOE coll., JHEP, 05, (2008)

(b) J. Bijnens and K. Ghorbani., JHEP, 11, (2007)

(d) WASA-at-COSY coll., Phys. Rev., C90(045207), 2014 (e) Peng Guo et al., Phys. Rev., D92(05016), (2015)

(f) KLOE coll., JHEP, 019, (2016)

WASA-at-COSY results used for Partial Wave Analysis (PWA) from JPAC* group \Rightarrow Direct calculation of: $Q = 21.4 \pm 0.4_{stat}^{(e)}$

Dalitz Plot Analysis and determination of Q for $\gamma p \rightarrow p \eta [\eta \rightarrow \pi^+ \pi^- \pi^0]$ with CLAS

See plenary talk "Hadron Spectroscopy at JPAC" by Alessandro Pilloni at 4.40 p.m.

Small Outlook: Dalitz Plot Analysis for $\omega \rightarrow \pi^+\pi^-\pi^0$ with WASA-at-COSY

- Theoretical description of this decay: VMD Model, Lagrangian Approach^(a), Dispersive Analysis^{(b),(c)} → Input from experiment needed
- Look at: $\frac{d^2\Gamma}{dZd\Phi} \propto (1 + 2\alpha Z + 2\beta Z^{3/2} \sin^3 \Phi + \mathcal{O}(Z^2) + ...)$
- Analysis ongoing^{(d),(e)} for the reaction: $pd \rightarrow {}^{3}\text{He}\omega[\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}]$ and $pp \rightarrow pp\omega[\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}]$

(a) S. Leupold et al., Eur. Phy. J. A 39, 205-212, (2009) (b) N. Niiecknig et al., Eur. Phy. J. C 39, 2014, (2012)

(c) I.V:Danilkin et al., Phys. Rev. D91, 094029, (2015) (d) PhD.-Project of Lena Heijkenskjöld (e) PhD.-Project of Siddhesh Sawant

Small Outlook: Dalitz Plot Analysis for $\eta' \rightarrow \pi^+\pi^-\eta$ with CLAS

- The decay $\eta' \to \pi^+\pi^-\eta$ allows to probe the low energy regime of QCD \Rightarrow Test ChPT
- Compare theory and experiment by checking decay kinematics ⇒ Dalitz Plot
- Analysis* performed using the CLAS g12 data set
- pprox 87 k events reconstructed

* PhD-Project of S. Ghosh

CEBAF Large Acceptance Spectrometer - CLAS

01.02.2017

The CLAS g12 $\gamma p \rightarrow pX$ Data Set

- Photon beam: $E_{\gamma,\text{beam}} \in [1.1 \text{ GeV}, 5.45 \text{ GeV}]$
- (Main) Contributions from:
 - Direct pion production (e.g. $\gamma p \rightarrow p \pi^+ \pi^- \pi^0$)
 - π^0 , η , ω and ρ decays

01.02.2017

Reconstruction of $\eta \rightarrow \pi^+\pi^-\pi^0$ Events

Decay Specific Analysis Steps

- i) Kinematic fit with reaction hypothesis: $\gamma p \rightarrow p \pi^+ \pi^-(\pi^0)$
- ii) Kinematic Limit: $M(\pi^+, \pi^-) \le m_\eta + 3\sigma_{\eta, res} m_{\pi^0}$

 $\approx 700 \, {\rm k} \; \eta \rightarrow \pi^+ \pi^- \pi^0$ events reconstructed so far

01.02.2017

Towards the Dalitz Plot

- i) Look at $M_x(p)$ -spectrum as a function of the global bin i(X, Y)
- ii) Subtract non-resonant background
- iii) Correct for contributions from $\eta \to \pi^+ \pi^- \gamma$

01.02.2017

Current Status

- Left: Dalitz Plot after background subtraction and correction for $\eta \rightarrow \pi^+ \pi^- \gamma$ events (see previous slide)
- Right: One Dimensional Dalitz Plot after applying efficiency correction
- Fit function: Norm \times (1 + aY + bY + dX^2 + fY^3)
- Systematic checks and validation of current results ongoing

Summary and Outlook

- **1.** Features of the hadronic decay: $\eta \rightarrow \pi^+ \pi^- \pi^0$
 - C-conserving
 - Isospin-violating
 - Decay amplitude driven by quark mass ratio
- 2. Determine decay amplitude via Dalitz Plot Analysis
 - Kinematics of a three body decay described by two variables
 - Dalitz Plot Parameters: a,b,c,d,e and f
 - Asymmetries in Dalitz Plot \leftrightarrow c and e are non-zero \leftrightarrow C-Violation
- 3. Several experimental and theoretical efforts to determine Dalitz Plot
 - c = e = 0 confirmed by experiments
 - Latest measurements done by WASA-at-COSY and KLOE:
 - i) KLOE confirmed Dalitz Plot asymmetries to be consistent with zero
 - ii) WASA-at-COSY results used in PWA (JPAC-group) to determine the quark mass ratio
 - JPAC: Partial Wave Analysis as a tool to fit experimental Dalitz Plot distributions
- **4.** Dalitz Plot Analysis of $\eta \rightarrow \pi^+ \pi^- \pi^0$ with CLAS
 - pprox 700 k events reconstructed so far
 - Final (one dimensional) Dalitz Plot distribution
 - To do:
 - i) Systematics checks (ongoing)
 - ii) Determination of quark mass ratio

Backup: Three Body Decays and the Dalitz Plot

Kinematic Constraints	NDF
3 Lorentz-Vectors	12
Momentum Conservation	-3
Energy Conservation	1
3 Masses	-3
3 Euler Angles	-3
Total*	2

* Valid for all particles being scalars

Dalitz Plot

- Two* variables sufficient to describe three body decay
- Display decay kinematics
- Show possible resonances

Backup: Reconstruction of $\eta \rightarrow \pi^+\pi^-\pi^0$ I) The Kinematic Fit

- ~ 2/3 of the available CLAS g12 data set analysed so far
- Use least squares kinematic fit
 - Reaction hypothesis: $\gamma p \rightarrow p \pi^+ \pi^-(\pi^0)$
 - Reject events with a probability < 10%

01.02.2017

Backup: Reconstruction of $\eta \rightarrow \pi^+\pi^-\pi^0$ I) The Kinematic Fit

- ~ 2/3 of the available CLAS g12 data set analysed so far
- Use least squares kinematic fit
 - Reaction hypothesis: $\gamma p \rightarrow p \pi^+ \pi^-(\pi^0)$
 - Reject events with a probability < 10%

01.02.2017

Backup: Reconstruction of $\eta \rightarrow \pi^+\pi^-\pi^0$

II) Reject Contributions from $\omega o \pi^+\pi^-\pi^0$

- $\sim 2/3$ of the available CLAS g12 data set analysed so far
- Use least squares kinematic fit
- Use kinematic limit: $M(\pi^+,\pi^-) \leq m_\eta + 3\sigma_{\eta,rec} m_{\pi^0}$

01.02.2017

Backup: Reconstruction of $\eta \rightarrow \pi^+\pi^-\pi^0$

II) Reject Contributions from $\omega o \pi^+\pi^-\pi^0$

- $\sim 2/3$ of the available CLAS g12 data set analysed so far
- Use least squares kinematic fit
- Use kinematic limit: $M(\pi^+,\pi^-) \leq m_\eta + 3\sigma_{\eta,rec} m_{\pi^0}$

01.02.2017

Backup: The Dalitz Plot in one Dimension

Follow WASA-at-COSY analysis^(a):

- Divide Dalitz Plot in N × N bins
- Translate each pair (X,Y) into a global bin number $i \in [0, N^2 1]$ (e.g. $X = Y = 0 \equiv i = 60$)
- Take kinematic boundaries (see black line in left plot) into account

(a) WASA-at-COSY coll., Phys. Rev., C90(045207), 2014

- Look at 1D Dalitz Plot with WASA-at-COSY values for a,b,d and f
- Center of Dalitz Plot is at i(0,0) = 60
- $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3)$

- Look at 1D Dalitz Plot with WASA-at-COSY values for a,b,d and f
- Center of Dalitz Plot is at i(0,0) = 60
- $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3)$

- Look at 1D Dalitz Plot with WASA-at-COSY values for a,b,d and f
- Center of Dalitz Plot is at i(0,0) = 60
- $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3)$

- Look at 1D Dalitz Plot with WASA-at-COSY values for a,b,d and f
- Center of Dalitz Plot is at i(0,0) = 60
- $= \frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3)$

- Look at 1D Dalitz Plot with WASA-at-COSY values for a,b,d and f
- Center of Dalitz Plot is at i(0,0) = 60
- $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3)$

- Look at 1D Dalitz Plot with WASA-at-COSY values for a,b,d and f
- Center of Dalitz Plot is at i(0,0) = 60
- $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3)$

- Look at 1D Dalitz Plot with WASA-at-COSY values for a,b,d and f
- Center of Dalitz Plot is at i(0,0) = 60
- $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3)$