Measurement of polarization observables in the reaction $\,\gamma p \to K^+ \Lambda$

Shankar Adhikari Florida International University

> APS April Meeting 2018 Columbus, OH

Outline

- Introduction
- Experiment
- Events Selection
- Preliminary results for C_x, C_z and P.
- Conclusion and outlook.

Introduction

Study of the baryon resonances are important to understand the fundamental degrees of freedom inside hadrons.

- **Missing Baryon Problem:** **
 - a lot of predicted resonances from models (Quark, Lattice etc) are not observed yet.

Introduction

- Pion beams was the primary tool to study resonances.
- Not all resonances couple strongly to the Nπ channel.
- Interference of states: Possible interference between N and ∆ states.
- ★ K⁺A channel is important that; - only contribute to N^* with I = 1/2.
 - Λ -> $p\pi^-$ decay allows to measure recoil polarization.

Observables for photoproduction

- Photoproduction describes by 4 complex amplitudes.
- Total 16 observables.

Polarized	Beam	Target	Hyperon
	unpol. linear circular	x y'z	x' y' z'
Unpolar.	σ		
Beam: linear circular	Σ	H G F E	$O_{x'}$ $O_{z'}$ $C_{x'}$ $C_{z'}$
Target: x z		Т	$\begin{array}{ccc} T_{x'} & T_{z'} \\ L_{x'} & L_{z'} \end{array}$
Hyperon:			Р

8 observables need to separate amplitude at given W along with differential cross section.

• Polarization observables are sensitive to interference from different states and different process.

Previous Measurement $\gamma p \to K^+ \Lambda$

APS April Meeting 2018

Why this analysis?

- Add more data point on same kinematic range.
- Extend measurement up to 5.45 GeV photon beam energy.
- Suitable to study higher mass states.

• High energy non-resonant background contributions can be measure.

Experiment

Hall B Detector

G12 experiment

- 60-65 nA electron beam current.
- Photoproduction experiment; beam energy up to 5.5 GeV.
- Circularly polarized photon beam.
- 40 cm long unpolarized hydrogen target.

Event Selection

Background Subtraction

For 2Track; energy dependent background appears, binned on energy and applied background subtraction method.

Q Value Method:

Event-by-event basis method determining the signal event using Q-factor. M. Williams, M. Bellis, and C. A. Meyer, JINST 4, P10003 (2009).

Observables extraction Methods

• 1d fit method

$$A(\cos\theta_{x/z}^p) = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_{\circ} C_{x/z} \cos\theta_{x/z}^p$$

 α = Weak decay asymmetry 0.642

• 2d fit method $A(\cos\theta_x^p, \cos\theta_z^p) = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_\circ C_x \cos\theta_x^p + \alpha P_\circ C_z \cos\theta_z^p$

- Event by event basis.
- Reduce the bias comes from acceptance because of event wise analysis. $\begin{aligned} & f(\cos\theta_x^p,\cos\theta_z^p) = (1 + \alpha P_\circ(C_x\cos\theta_x^p + C_z\cos\theta_z^p)) \\ & L(C_x,C_z) = \prod_{i=1}^n f(\cos\theta_x^p,\cos\theta_z^p) \end{aligned}$
- Minimize negative log likelihood to fit the data;

$$l = -\sum_{i=1}^{n} \log f(\cos \theta_x^p, \cos \theta_z^p)$$

Comparision of 3 methods

- Shows excellent agreements. Later showing results only for maximum likelihood method.
- Why ML? Applicable even when low statistics per bin.

P results and comparision(CLAS 2010)

C_x Results and comparision(CLAS 2007)

C_z Results and comparision(CLAS 2007)

Conclusion and Outlook

- Measured Λ polarization observables C_x , P and C_z using g12 dataset for 1.75 < W < 3.3 GeV.
 - 3 method: 1d/2d/ML methods, all showing consistent results.
 - 2 topologies analyzed: results are mostly self-consistent.
- Preliminary C_x/C_z results:
 - Statistical uncertainty are smaller than previous g1c results for W < 2.54 GeV.
 - In the good agreement with earlier CLAS results.
 - First time measurement for W > 2.54 GeV.
 - P results:
 - agree well with CLAS 2010 results.
- Can be used to constrain non-resonant (t-channel) contribution.

Thank You!

C_z Results

C_x Results

Comparision with CLAS (2007): C_x, C_z

- Comparing 2 and 3 track:
 - High statistics for 2 track
 - Small statistical uncertainity
- Comparing 2, 3 track with CLAS (2007) results:
 - Much more statistics than previous measurement.
 - 2 track topology has smaller statistical uncertainity.
 - Good agreements.
- Higher kinematic coverage:
 - Include results W > 2.54 GeV.

P Results

R values for the Λ

