Recent Spin Structure Function Measurements from CLAS at Jefferson Laboratory

Robert Fersch Christopher Newport University for the CLAS Collaboration

 Overview of the CLAS EG1 experiment at Jefferson Laboratory

 Analysis: from inclusive asymmetries to structure functions

Recently published EG1 results

 Related polarized inclusive scattering data from CLAS; impact of data and future experiments in CLAS12

• Overview of the CLAS EG1 experiment at Jefferson Laboratory

Structure of the Nucleon

Unpolarized distributions q, g f(x) f(x) $\delta f(x)$ Helicity $\Delta q, \Delta g$ $\Delta f(x)$ $\delta f(x)$ $\delta d.o.f.$ completely describe the nucleon at leading twist when $k_T = 0$

Structure of the Nucleon

Unpolarized distributions q, g f(x) f(x) $\delta f(x)$ Transversity δq $\delta f(x)$ $\delta d.o.f.$ completely describe the nucleon at leading twist when $k_T = 0$

Structure of the Nucleon

Helicity: $\Delta q = q^+ - q^-$

Incident electron couples to quarks of opposite longitudinal spin

Structure function $g_1(x,Q^2) \sim \sigma_{1/2} - \sigma_{3/2}$ 5 Requires longitudinally polarized beam and target

The EG1 experiment

ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV)

Jefferson Laboratory (Newport News, VA, USA)

Polarized (~70%) electron beam at energies up to 6 GeV

Beam delivered to fixed targets in detector halls

Beam current of 20 nA typical for EG1 experiment

The EG1 experiment

ran in CLAS for 7 months 2000-2001

4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV)

CEBAF Large Acceptance Spectrometer (Hall-B) at Jefferson Lab

Drift Chambers (momentum reconstruction)

Scintillation Counters (timeof-flight, PID)

Cherenkov Counters and Electromagnetic Calorimeters (separation of electrons from light hadrons)

The EG1 experiment

ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV)

CLAS Longitudinally Polarized Target

¹⁵NH₃ and ¹⁵ND₃ target cells
Typical polarizations of 75% (H) and 30% (D)
¹²C and LHe target cells for unpolarized background subtraction

> ammonia target cell

The EG1 experiment ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) Kinematic coverage & statistics

Analysis: from inclusive asymmetries to structure functions

Double spin asymmetry between + $(\uparrow\uparrow,\downarrow\downarrow)$ and – $(\uparrow\downarrow,\downarrow\uparrow)$ beam and target polarizations

$$A_{\parallel} = \frac{1}{P_b P_t F_{DF}} \frac{n^+ - n^-}{n^+ + n^-}$$

Polarization product from

elastic asymmetry

12

Double spin asymmetry between + $(\uparrow\uparrow,\downarrow\downarrow)$ and - $(\uparrow\downarrow,\downarrow\uparrow)$ beam and target polarizations

$$A_{\parallel} = \frac{1}{P_b P_t F_{DF} n^+ + n^-}$$

Dilution factor from 12C, LHe runs and radiated cross section model

normalization to global data $\begin{array}{c}
 & 0.6 \\
 & 0.4 \\
 & 0.4 \\
 & 0.2 \\
 & 0.2 \\
 & 0.2 \\
 & 0.5 \\
 & 1 \\
 & 1.5 \\
 & 2 \\
 & 2.5 \\
 & 3 \\
 & 3.5 \\
 & 4 \\
 & 4.5 \\
 & 5 \\
 & Q^2 (\text{GeV}^2)
\end{array}$

(also nuclear polarization

and e⁺e⁻ corrections)

(difference

between red,

Radiative

corrections

Double spin asymmetry between + ($\uparrow\uparrow$, $\downarrow\downarrow$) and – ($\uparrow\downarrow$, $\downarrow\uparrow$) beam and target polarizations

$$A_{\parallel} = \frac{1}{P_b P_t F_{DF}} \frac{n^+ - n^-}{n^+ + n^-}$$

Physics quantities

virtual photon asymmetries A₁ and A₂

$$A_{||}(\nu, Q^2) = D[A_1^p(\nu, Q^2) + \eta A_2^p(\nu, Q^2)]$$

spin structure functions g_1 and g_2

$$\frac{A_{||}}{D} = (1 + \eta\gamma)\frac{g_1^p}{F_1^p} + \gamma(\eta - \gamma)\frac{g_2^p}{F_1^p}$$

(kinematics/models)

$$D = \frac{1 - E'\varepsilon/E}{1 + \varepsilon R}; \quad \eta = \frac{\varepsilon\sqrt{Q^2}}{E - E'\varepsilon} \qquad R = \frac{\sigma_L}{\sigma_T}$$
$$\gamma = \frac{2Mx}{\sqrt{Q^2}}$$

(also nuclear polarization

and e⁺e⁻ corrections)

(difference

between red,

Radiative

Double spin asymmetry between + ($\uparrow\uparrow$, $\downarrow\downarrow$) and – ($\uparrow\downarrow$, $\downarrow\uparrow$) beam and target polarizations

$$A_{\parallel} = \frac{1}{P_b P_t F_{DF}} \frac{n^+ - n^-}{n^+ + n^-}$$

Physics quantities

virtual photon asymmetries A₁ and A₂

$$A_{||}(\nu, Q^2) = D[A_1^p(\nu, Q^2) + \eta A_2^p(\nu, Q^2)]$$

spin structure functions g_1 and g_2

$$\frac{A_{||}}{D} = (1 + \eta \gamma) \frac{g_1^p}{F_1^p} + \gamma (\eta - \gamma) \frac{g_2^p}{F_1^p}$$

(kinematics/models)

$$D = \frac{1 - E'\varepsilon / E}{1 + \varepsilon R}; \quad \eta = \frac{\varepsilon \sqrt{Q^2}}{E - E'\varepsilon} \qquad R = \frac{\sigma_L}{\sigma_T}$$
$$\gamma = \frac{2Mx}{\sqrt{2\varepsilon}}$$

 $\sqrt{Q^2}$

Recently published EG1 results

A₁ for the proton shown against world data

$$A_{1}^{p}(\gamma^{*}) \equiv \frac{\sigma_{T}^{\frac{1}{2}}(\gamma^{*}) - \sigma_{T}^{\frac{3}{2}}(\gamma^{*})}{\sigma_{T}^{\frac{1}{2}}(\gamma^{*}) + \sigma_{T}^{\frac{3}{2}}(\gamma^{*})}$$

g₁ for the proton shown against world data

$$g_1(x,Q^2) = \frac{1}{2} \sum q_f^2 \Delta f(x,Q^2) = \frac{4}{18} \Delta u(x,Q^2) + \frac{1}{18} \Delta d(x,Q^2) + \frac{1}{18} \Delta s(x,Q^2) +$$

(interpretation in DIS scaling limit)

g_1/F_1 vs. Q^2 results for the proton

$$\frac{A_{||}}{D} = (1 + \eta \gamma) \frac{g_1^p}{F_1^p} + \gamma (\eta - \gamma) \frac{g_2^p}{F_1^p}$$

NLO PDF fit at $Q^2 = 5$ GeV²

DIS limit (W = 2 GeV)

Moments of *g*¹ Needed to test *sum rules* and determine matrix elements in the OPE (Operator Product Expansion)

(integrated over x from x=0.001 to elastic threshold)

("first moment" of g_1)

 $\Gamma_1 = \int g_1 \, \mathrm{d}x$

1 8 see also Prok, *et al.* Phys. Rev. B 672, 12 (2009)

Higher Twist analysis of Γ₁ (includes elastic contribution)

Extraction of higher twist elements through a fit by A. Deur

Forward Spin Polarizability see also Prok, et al. Phys. Rev. B 672, 12 (2009)

For scattering cross-sections in terms of Compton amplitudes

$$\begin{split} \gamma_0 &= \frac{1}{4\pi} \int_{\nu_{th}}^{\infty} \frac{\sigma_{3/2} - \sigma_{1/2}}{\nu'^3} d\nu' \\ &= \frac{16M^2 \alpha}{Q^6} \int_0^{x_{th}} x^2 A_1(x, Q^2) F_1(x, Q^2) dx \end{split}$$

Higher Moments

Large *x*-range provided opportunity to measure these

$$\Gamma_1^n = \int x^{n-1} g_1(x, Q^2) dx$$

All of this is available for the deuteron, too!

N. Guler *et al. (CLAS Collaboration)*, "Precise Determination of the Deuteron Spin Structure at Low to Moderate Q² with CLAS and Extraction of the Neutron Contribution", Phys. Rev. C 92, 055201(2015).

Previous publication also includes extractions for the bound neutron

N. Guler *et al. (CLAS Collaboration)*, "Precise Determination of the Deuteron Spin Structure at Low to Moderate Q² with CLAS and Extraction of the Neutron Contribution", Phys. Rev. C 92, 055201(2015).

Tests of Bloom-Gillman Duality

Averaging over resonances - comparing to extrapolated NLO PDFs

(see also Bosted, et al. Phys. Rev. C 75, 035203 (2007))

"global" duality

"local" duality

5

3

 Q^2 (GeV²

of g_1 data in the resonance region

First extraction of A₂ and g₂ from EG1 data

First extraction of A₂ and g₂ from EG1 data

little world data available!

g₂ extracted similarly

$$\frac{A_{||}}{D} = (1 + \eta\gamma)\frac{g_1^p}{F_1^p} + \gamma(\eta - \gamma)\frac{g_2^p}{F_1^p}$$

$$\frac{g_1^p + g_2^p}{\bar{g}_T(x, Q^2)} = \int_x^1 \frac{\bar{g}_1(y, Q^2)}{y} dy$$

Wandzura-Wilzek relation (leading twist) useful for extracting higher twist matrix elements; quark-gluon correlations

Details regarding these results can be found in the paper:

"Determination of the proton spin structure functions for 0.05 < Q² < 5 GeV² using CLAS"

Phys.Rev. C96 (2017) no.6, 065208

 Related polarized inclusive scattering data from CLAS; impact of data and future experiments in CLAS12 Two other related experiments in CLAS: EG4: extra small-angle Cherenkov Counter in 1 Sector (Lower Q^2 than EG1; down to $Q^2 = 0.02 \text{ GeV}^2$) (inclusive results for deuteron published)

Lower Q² limit enables tests of GDH sum rule and chiral perturbation theory

K. Adhikari, et. al. Phys.Rev.Lett. 120 (2018) no.6, 062501

Two other related experiments in CLAS:EG1-DVCS: focus on higher scattering angles(Higher Q^2 than EG1; better results at $Q^2 > 1 \text{ GeV}^2$)(inclusive results for proton and deuteron published)protondeuteron

Y. Prok, et. al. Phys.Rev. C90 (2014) no.2, 025212

Impact of JLab data on polarized PDFs

Global analysis by JAM (JLab Angular Momentum) Theory group (W. Meltinchouk *et al.*)

Phys Rev D 93, 074005 (2016)

spin distributions within the nucleon

Future polarized experiments in new CLAS12 detector (Beam energies up to 12 GeV)

Kinematic coverage will be extended to higher *x* and *Q*²

A₁ Deep Inelastic Scattering (Q² > 1 GeV², W > 2 GeV) EG1 and EG1-DVCS results

Proton

Deuteron

DIS results at high x provide insights into QCD models of the nucleon 31

A₁ Deep Inelastic Scattering (Q² > 1 GeV², W > 2 GeV) Projected CLAS12 Data

Proton

Deuteron

DIS results at higher x will provide better tests 32 of QCD models near the pQCD limit