

3D Partonic Structure of Nucleons and Nuclei

M. Hattawy

- Physics Motivations
- Recent Results.
- Future Measurements.

Exposing Novel Quark and Gluon Effects in Nuclei, ECT*, 16-20 April 2018

Exploring the Hadron Structure

Most of what we know today about hadrons' structure has come from the electromagnetic probes which give access to measure structure functions that quantify the properties of partons in hadrons.

- Form Factors (FFs)
 - \rightarrow Provide the charge and magnetization distributions inside a hadron.
 - \rightarrow Accessible via Elastic Scattering (ES).

- C. F. Perdrisat, V. Punjabi and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694-764 (2007)
- Kelly J. J., Phys. Rev. C 66, 065203 (2002)

Exploring the Hadron Structure

Structure functions that quantify the properties of the partons in a hadron:

• Form Factors (FFs)

• Parton Distribution Functions (PDFs)

- \rightarrow Provide partons longitudinal momentum distributions
- \rightarrow Measurable via Deep Inelastic Scattering (DIS).
 - For nucleons, the unpolarized DIS cross section is parametrized

Proton structure.

- \rightarrow Large x, $u_v(x) \sim 2 d_v(x)$
- \rightarrow Low x, more gluons radiated and slpitting producing sea quarks

- J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001, page241, 2012. - R. Placakyte et al. (H1 and ZEUS Collaborations), arXiv:1111.5452 [hep-ph], 2010.

EMC Effect

[K. Rith, arXiv:1402.5000 [hep-ph], 2014]

Precise measurements at CERN, SLAC and JLab
 → Links with the nuclear properties, i.e. mass & density

More details will be given by Seamus, William, Gerald, Misak, John, and Ian

- The origin of the EMC effect is still not fully understood, but possible explanations:
 - \rightarrow Modifications of the nucleons themselves
 - \rightarrow Effect of non-nucleonic degrees of freedom, e.g. pions exchange
 - \rightarrow Modifications from multi-nucleon effects (binding, N-N correlations, etc...)

Clear explanations may arise from measuring the nuclear modifications via measuring the Generalized Parton Distributions.

EMC effect: the modification of the PDF F₂ as a function of the longitudinal momentum fraction x [0.3, 0.75] carried by the parton.

Generalized Parton Distributions

- Contain information on:

- \rightarrow Correlation between quarks and anti-quarks
- → Correlation between longitudinal momentum and transverse spatial position of partons
- Can be accessed via hard exclusive processes such as deeply virtual Compton scattering (DVCS):

- $t = (p p')^2 = (q q')^2$
- * At leading order in $1/Q^2$ (twist-2) and in the coupling constant of QCD (α_s).

• **Experimentally,** the measured photonelectroproduction cross section ($ep \rightarrow ep\gamma$) is:

• The DVCS signal is enhanced by the interference with BH.

2

DVCS off Nuclei

Two DVCS channels are accessible with nuclear targets:

\diamond Coherent DVCS: $e^-A \rightarrow e^-A \gamma$

- \rightarrow Study the partonic structure of the nucleus.
- → One chiral-even GPD ($H_A(x,\xi,t)$) is needed to parametrize the structure of the spinless nuclei (⁴He, ¹²C, ¹⁶O, ...).

◊ Incoherent DVCS: e⁻A→e⁻N γ X

- \rightarrow The nucleus breaks and the DVCS takes place on a nucleon.
- \rightarrow Study the partonic structure of the bound nucleons
 - (4 chiral-even GPDs are needed to parametrize their structure).

Nuclear Spin-Zero DVCS Observables

The GPD H_A parametrizes the structure of the spinless nuclei (⁴He,¹²C, ...)

$$\begin{aligned} \mathcal{H}_{A}(\xi,t) &= Re(\mathcal{H}_{A}(\xi,t)) - i\pi Im(\mathcal{H}_{A}(\xi,t)) \\ Im(\mathcal{H}_{A}(\xi,t)) &= H_{A}(\xi,\xi,t) - H_{A}(-\xi,\xi,t) \\ Re(\mathcal{H}_{A}(\xi,t)) &= \mathcal{P} \int_{0}^{1} dx [H_{A}(x,\xi,t) - H_{A}(-x,\xi,t)] C^{+}(x,\xi)] \end{aligned}$$
Quark propagator
$$C^{+}(x,\xi) &= \frac{1}{x-\xi} + \frac{1}{x+\xi} \end{aligned}$$

 \rightarrow Beam-spin asymmetry (A_{LU}(φ) : (+/- beam helicity)

$$A_{LU} = \frac{d^4\sigma^+ - d^4\sigma^-}{d^4\sigma^+ + d^4\sigma^-} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

$$= \frac{\alpha_0(\phi) \Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi) \Re e(\mathcal{H}_A) + \alpha_3(\phi) \left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$$

$$\alpha_0(\phi) = \frac{x_A(1+\varepsilon^2)^2}{y} S_{++}(1) \sin(\phi)$$

$$\alpha_1(\phi) = c_0^{BH} + c_1^{BH} \cos(\phi) + c_2^{BH} \cos(2\phi)$$

$$\alpha_2(\phi) = \frac{x_A(1+\varepsilon^2)^2}{y} \left(C_{++}(0) + C_{++}(1)\cos(\phi)\right)$$

$$\alpha_3(\phi) = \frac{x_A^2 t(1+\varepsilon^2)^2}{y} \mathcal{P}_1(\phi) \mathcal{P}_2(\phi) \cdot 2\frac{2-2y+y^2+\frac{\varepsilon^2}{2}y^2}{1+\varepsilon^2}$$

Theoretical Predictions of the EMC in ⁴He

On-shell calculations:

Off-shell calculations:

Proton Tomography via DVCS

- Local fit of all the JLab data – Jlab Hall A (σ , $\Delta \sigma$) – CLAS (σ , $\Delta \sigma$, ITSA, DSA)
- Enough coverage to explore the t and $x_B (\rightarrow \xi)$ dependence of H_{Im} .

- Obtaining the tomography of the proton – Represented is the mean square charge radius of the proton for slices of x. 0.8
- The nucleon size is shrinking with x.

[R. Dupré et al. Phys.Rev. D95 (2017) no.1, 011501]

Nuclear DVCS Measurements: HERMES

- The exclusivity is ensured via cut on the missing mass of $e\gamma X$ final state configuration.
- Coherent and incoherent separation depending on -t, i.e. coherent rich at small -t.
- Conclusions from HERMES: No nuclear-mass dependence has been observed.

In CLAS - E08-024, we measured EXCLUSIVELY the coherent and incoherent DVCS channels off ⁴He

$$A_{LU}^{sin} = \frac{1}{\pi} \int_0^{2\pi} d\phi \, \sin\phi \, A_{LU}(\phi)$$

[A. Airapetian, et al., Phys Rev. C 81 (2010) 035202]

CLAS - E08-024 Experimental Setup

$e^{-4}He \rightarrow e^{-}$ (⁴He/pX) γ

6 GeV, L. polarized

Beam polarization (P_B) = 83%

- CLAS:

- \rightarrow Superconducting Torus magnet.
- \rightarrow 6 independent sectors:
 - \rightarrow DCs track charged particles.
 - \rightarrow CCs separate e⁻/ π ⁻.
 - \rightarrow TOF Counters identify hadrons.
 - \rightarrow ECs detect γ , e⁻ and n [8°,45°].
- IC: Improves γ detection acceptance [4°,14°].
- **RTPC:** Detects low energy nuclear recoils.
- Solenoid: Shields the detectors from Møller electrons.
 Enables tracking in the RTPC.
- **Target:** ⁴He gas @ 6 atm, 293 K

Coherent DVCS Selection & Asymmetries

1. We select **COHERENT** events which have:

 \diamond Events with :

- Only one good electron in CLAS
- At least one high-energy photon ($E\gamma > 2 \text{ GeV}$)
- Only one ⁴He in RTPC ($p \sim 250-400 \text{ MeV}$).

 $\langle Q^2 > 1$ GeV².

 \diamond Exclusivity cuts.

2. π^0 background subtraction based on data and simulation (cont. ~ 2 – 4%)

3. Beam-spin asymmetry:

$$A_{LU} = \frac{d^4 \sigma^+ - d^4 \sigma^-}{d^4 \sigma^+ + d^4 \sigma^-} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-} \\ = \frac{\alpha_0(\phi) \Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi) \Re e(\mathcal{H}_A) + \alpha_3(\phi) \left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$$

- 2D bins due to limited statistics
- Uncertainities dominated by statictics
- Systematic uncertainities (~ 10 %)
- dominated by exclusivity cuts (~8 %) and large phi bining (~5 %)

Coherent A and CFFs

PRC 72 (2005) 0322011 [HERMES: A. Airapetian, et al., PRC 81, 035202 (2010)]

- \rightarrow Same A₁₁₁ sign as HERMES.
- \rightarrow Asymmetries are in agreement with the available models.
- \rightarrow The first ever experimental extraction of the real and the imaginary parts of the ⁴He CFF. Compatible with the calculations.
- \rightarrow More precise extraction of Im(H₁).

CLAS-EG6: M. Hattawy et al., Phys. Rev. Lett. 119, 202004 (2017) Convolution-Dual: V. Guzey, PRC 78, 025211 (2008). Convolution-VGG: M. Guidal, M. V. Polyakov, A. V. Radyushkin and M. Vanderhaeghen, PRD 72, 054013 (2005). Off-shell model: J. O. Gonzalez-Hernandez, S. Liuti, G. R. Goldstein and K. Kathuria, PRC 88, no. 6, 065206 (2013)

Incoherent DVCS Selection & Asymmetries

1. We select events which have:

 \diamond Events with :

- Only one good electron in CLAS
- At least one high-energy photon ($E\gamma > 2 \text{ GeV}$)
- Only one proton in CLAS.

 $Q^2 > 1$ GeV² and W> 2 GeV/c²

♦ Exclusivity cuts (3 sigmas).

2. π^0 background subtraction (contaminations ~ 8 - 11%)

3. Beam-spin asymmetry:

$$A_{LU} = \frac{d^4\sigma^+ - d^4\sigma^-}{d^4\sigma^+ + d^4\sigma^-} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

 $A_{LU} \propto \alpha(\phi) \{F_1 H + \xi (F_1 + F_2) \widetilde{H} + \kappa F_2 E\}$

• 2D bins due to limited statistics

• Fits in the form: $\alpha * \sin(\phi)$

 $(1+\beta*\cos(\phi))$

* A PRL presenting the incoherent results is under progress.

Generalized EMC Ratio

◊ We comparing our measured coherent/incoherent asymmetries to the asymmetries measured in CLAS DVCS experiment on free proton

→ **Coherent/proton** is:

Consistent with the enhancement predicted by the Impulse approximation model [V. Guezy et al., PRC 78 (2008) 025211]
Does not match the inclusive measurement of HERMES.

[A. Airapetian, et al., Phys. Rev. C 81, 035202 (2010)]

→ **Incoherent/proton** is supressed compared to both the PWIA and the nuclear spectral function calculations.

[S. Liuti and K. Taneja. PRC 72 (2005) 032201] [V. Guezy et al., PRC 78 (2008) 025211]

CLAS12-ALERT Program

CLAS–E08-024 experiment:

- 2D binning due to limited statistics
- Limited phase-space.

CLAS12 experimental apparatus:

- High luminosity & large acceptance.
- Measurements of deeply virtual exclusive, semi-inclusive, and inclusive processes.

• We proposed to measure with CLAS12:

- Partonic Structure of Light Nuclei.
- Tagged EMC Measurements on Light Nuclei.
- Spectator-Tagged DVCS Off Light Nuclei.
- Other Physics Opportunities.

The momentum threshold of the CLAS12 inner tracker is too high to be used for our measurements.

- Proposed experimental setup:
 - CLAS12 forward detectors.
 - A Low Eenergy Recoil Tracker (ALERT) in place of CLAS12 Central detector (SVT & MVT).
- CLAS12-ALERT setup will allow higher statistics and wider kinematical coverage.

ALERT Detector

- \rightarrow Will detect the trajectory of the low energy nuclear recoils.
 - 8 circular layers of 2mm hexagonal cells.
 - 10° stereo-angle to give z-resolution.
 - Total of 2600 wires, < 600 kg tension.
 - Maximum drift time ~ 250 ns, will be included in the trigger.
- Two rings of plastic scintillators (Total thickness of 20 mm, SIPMs directly attached):
 - \rightarrow TOF (< 150 ps resolution) and deposited energy measurements.

→ Separate protons, deuterium, tritium, alpha, ³He

ALERT Expected Performance

- Capabilities for very low momentum detection
 - As low as 70 MeV/c for protons and 240 MeV/c for ⁴He
 - Forward and backward detections (25° from the beam).
- Capabilities to handle high rates
 - Small distance between wires leads to short drift time <250 ns (5 μ s in a similar RTPC)
 - This translates into 20× less accidental hits
 - Will be integrated in the trigger for significantly reduced DAQ rate
- Improved PID
 - Like in the RTPC, we get dE/dx measurment
 - We have more resolution on the curvature due to the large pad size in previous RTPCs
 - TOF information

Partonic Structure of Light Nuclei (PR12-17-012)

- Map the fundamental structure of nuclei within the GPD framework

- Compare the quark and gluon 3D structure of the Helium nucleus

Requested PAC days: 20 days at $3x10^{34}$ cm⁻²s⁻¹ + 10 days at $6x10^{34}$ cm⁻²s⁻¹ + (5 Com.)

Tagged EMC Measurements (PR12-17-012A)

DIS, with tagged spectator, provides access to new variables and explore links between EMC effect and intranuclear dynamics

Tagged DIS provides test for:

- FSI models over wide momentum and angle ranges.
- EMC effect models: x/Q^2 scaling.
- d/u ratio changes in nuclear medium.

• Comparing D to ⁴He is particularly interesting:

- It conserves the nucleus isospin symmetry.
- ⁴He is a light nuclei with a sizable EMC effect.
- The two rescaling effects are cleanly separated by the comparison between the two nuclei.
- They complement each other in spectator momentum coverage.

Spectator-Tagged DVCS On Light Nuclei (PR12-17-012B)

- Probe connection between partonic and nucleonic interpretations via DVCS
- Partonic interpretation and in-medium hadron tomography of nucleons
- Study of Off-Forward EMC effect in incoherent DVCS

Bound-p DVCS:

- Fully detected ep³H final state, provides unique opportunity to study FSI, test PWIA, identify kinematics with small/large FSI.
- Bound neutron in ⁴He/quasi-free in ²H:
 - e 3 He(n) / ep(n) final states (p detection down to ~70 MeV, 3 He to ~120 MeV).
 - Six-dimensional binning ($Q^2, x_{_B}, t, \phi, p_{_s}, \theta_{_s}).$
- No additional PAC days

Other Physics Opportunities (PR12-17-012C)

The three main proposals of the ALERT run group is only a fraction of the physics that can be achieved by successfully analyzing the ALERT run group data

• π^0 production off ⁴He

- Coherent and incoherent production.
- Measure BSA, leading to chiral-odd CFFs.
- Also as a DVCS background.

Coherent DVCS off D

- Access to new GPDs, H_3 , with relationships to dueteron charge form factors.

Coherent DVMP off D

- π^0 , ϕ , ω and ρ mesons.
- Semi-inclusive reaction p(e,e`p)X
 - Study the π^0 cloud of the proton.
- $D(e, e'pp_S)X$
 - Study the π^- cloud of the neutron.

More Physics:

- Helium GPDs beyond the DVCS at leading order and leading twist.
- Tagged nuclear form factors measurements.
- The role of Δs in short-range correlations.
- The role of the final state interaction in hadronization and medium modified fragmentation functions.
- The medium modification of the transverse momentum dependent parton distributions.
- ... and more

Conclusions & Perspectives

Several decades of elastic and DIS experiments on hadrons have provided one-dimensional views of hadrons' structure.

Over a now exploring the 3D structure of nucleons within the GPD framework

- \rightarrow Fifteen years of successful experiments at JLab.
- \rightarrow Accumulated a wide array of proton data.
- \rightarrow The first tomography was extracted.

♦ The first exclusive measurement of DVCS off ⁴He:

- \rightarrow The coherent DVCS shows a stronger asymmetry than the free proton as was expected from theory.
- \rightarrow We performed the first ever model independent extraction of the ⁴He CFF.
- \rightarrow We extracted EMC ratios and compared them to theoretical predictions.
- → The bound proton has shown a different trend compared to the free one indicating the medium modifications of the GPDs and opening up new opportunities to study the EMC effect.

♦ **CLAS12-ALERT** will provide wider kinematical coverage and better statistics that will:

- \rightarrow Allow performing ⁴He tomography in terms of quarks and gluons.
- \rightarrow Allow comparing the gluon radius to the charge radius.
- \rightarrow Use tagging methods to study EMC effect via DIS measurements.
- \rightarrow Use Tagged-DVCS techniques to study in-medium nucleon interpretations.
- \rightarrow Reinforce EIC physics program by proving their usefulness in the valence region.