Proton Gravitational Form Factors François-Xavier Girod

V. Burkert, L. Elouadrhiri, FXG Nature **557**, 396–399 (2018)

Confinement Mechanism(s?)

Hadrons are singlets under SU(3) color : No net color charge in asymptotic particle states

- Linear growth of the static quark-antiquark pair Area-law falloff for the Wilson loop
- Gribov Confinement for light quarks Analytical properties of the propagators in the infrared

Instability of the vacuum above a supercritical charge

$$lpha_{ extsf{QED}}^{ extsf{crit}}$$
 = 137 for a point-like nucleus

$$pprox$$
 180 for a finite size nucleus

$$\frac{\alpha \frac{crit}{QCD}}{\pi} = C_F^{-1} \left[1 - \sqrt{\frac{2}{3}} \right] \approx 0.137$$

• Light-Front AdS/QCD

quark and gluon chiral condensates confined! \rightarrow condensates contribution to the cosmological constant already included in hadron mass

 Mass-Gap Millenium problem and Yang-Mills existence \$1M from the Clay Mathematical Institute

Gravity and QCD

In some fundamental sense a *graviton* can be thought of as a *pair of vector bosons*: Gravity amplitudes appear as squared Yang-Mills amplitudes in the *Color-Kinematics Duality*

Understanding the deeper origin of these dualities is at the heart of string theory. Here a graviton (closed string) happens naturally as a pair of vector bosons (open strings). The **duality** between Gravity in the bulk and QCD on the boundary of AdS space, also called **holographic principle** is the currently the all time most cited high energy physics publication

Gravitational Form Factors from QCD bound states are observables of choice to test these dualities. Most promising avenue to understand the non-perturbative structure of gauge theories. Z. Bern *et al.* Gravity as the Square of Gauge Theory *Phys. Rev. D*82 065003 (2010)

J. Maldacena The Large N limit of superconformal field theories and supergravity Int. J. Theor. Phys.38 1113 (1999) (13k citations as of June 2018)

3/18

July 2nd 2018

Energy Momentum Tensor

Gravitational Form Factors definition :

 $\langle p'|\hat{T}^{q}_{\mu\nu}|p\rangle = \bar{N}(p') \left[\frac{M_{2}^{q}(t)}{M} \frac{P_{\mu}P_{\nu}}{M} + J^{q}(t) \frac{i(P_{\mu}\sigma_{\nu\rho}+P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + d_{1}^{q}(t) \frac{\Delta_{\mu}\Delta_{\nu}-g_{\mu\nu}\Delta^{2}}{5M} \right] N(p)$

Confinement forces from space-space components of EMT The graviton with spin 2 couples directly to EMT But gravity is too weak to produce count rates in the detector

We can construct a spin 2 operator using two spin 1 operators \rightarrow use a process with two photons to measure the EMT? X. Ji *PRL***78** 610 (1997) ; M. Polyakov *PLB***555** 57 (2003)

July 2nd 2018 4/ 18

Generalized Parton Distributions

$$\begin{split} \gamma^* p &\to \gamma p', \ \rho p', \ \omega p', \ \phi p' \\ \text{Bjorken regime :} \\ Q^2 &\to \infty, \ x_B \text{ fixed} \\ t \text{ fixed } \ll Q^2 \ , \ \xi \to \frac{x_B}{2 - x_B} \\ \end{split}$$
$$= \bar{N}(p') \left[H^q(x,\xi,t)\gamma^+ + E^q(x,\xi,t)i\sigma^{+\nu}\frac{\Delta_\nu}{2M} \\ + \bar{H}^q(x,\xi,t)\gamma^+\gamma^5 + \bar{E}^q(x,\xi,t)\gamma^5\frac{\Delta^+}{2M} \right] \end{split}$$

spin	N no flip	N flip
q no flip	Н	Е
q flip	Ĥ	Ê

3-D Imaging conjointly in transverse impact parameter and longitudinal momentum

 P^+

 $\overline{2\pi}$

FX Girod

N(p)

Parton longitudinal momentum fraction distributions

$$\frac{1}{4\pi}\int dy^{-} e^{ixp^{+}y^{-}} \langle p|\bar{\psi}_{q}(0)\gamma^{+}\psi(y)|p\rangle = f_{q}(x)$$

$$H^{q}(x, \xi = 0, t = 0) = f_{q}(x)$$

Form Factors - Fourier transform of transverse spatial distributions

July 2nd 2018 6/ 18

Gravitational Form Factors and GPDs

Form Factors accessed via second x-moments :

 $\langle p' | \hat{T}^{q}_{\mu\nu} | p \rangle = \bar{N}(p') \begin{bmatrix} M_{2}^{q}(t) \frac{P_{\mu}P_{\nu}}{M} + J^{q}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + d_{1}^{q}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{5M} \end{bmatrix} N(p)$

Angular momentum distribution

$$J^{q}(t) = \frac{1}{2} \int_{-1}^{1} dx \, x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

Mass and force/pressure distributions

$$M_2^q(t) + rac{4}{5} d_1(t) \xi^2 = rac{1}{2} \int_{-1}^1 \mathrm{d}x \, x H^q(x,\xi,t)$$

$$d_{1}(t) = 15M \int d^{3}\vec{r} \cdot \frac{j_{0}(r\sqrt{-t})}{2t} p(r)$$

July 2nd 2018 7/ 18

Deeply Virtual Compton Scattering

The cleanest GPD probe at low and medium energies

DVCS Beam Spin Asymmetry

FX Girod

July 2nd 2018 9/ 18

DVCS Unpolarized Cross-Sections

Compton Form Factors

The t-slope becomes flatter with increasing x_{B} :

valence quarks (higher x_B) at the center of the nucleon and sea quarks (small x_B) at its periphery

FX Girod

July 2nd 2018 11/18

Global Fits to extract the D-term

Beam Spin Asymmetries

$$Im \mathcal{H}(\xi, t) = \frac{r}{1+x} \left(\frac{2\xi}{1+\xi}\right)^{-\alpha(t)} \left(\frac{1-\xi}{1+\xi}\right)^{b} \left(\frac{1-\xi}{1+\xi}\frac{t}{M^{2}}\right)^{-1}$$

Unpolarized cross-sections Use dispersion relation:

$$\mathsf{Re}\mathcal{H}(\xi,t) = D + \mathcal{P}\int \mathsf{d}x \left(rac{1}{\xi-x} - rac{1}{\xi+x}
ight)\mathsf{Im}\mathcal{H}(\xi,t)$$

pure Bethe-Heitler local fit + uncertainty range resulting global fit

D-term Extraction

 $d_1(t) = d_1(1 - t/M^2)^{-\alpha}$

 $t\mbox{-dependence}$ of the D-term :

Dipole gives singular pressure at r = 0Quadrupole implied by counting rules? Exponential?

 $d_1(0) < 0$ dynamical stability of bound state $d_1(0) = -2.04 \pm 0.14 \pm 0.33$ First Measurement of new fundamental quantity

Э^р

-1.2

-1.4

-1.8

^{0.4}-t (GeV²)

D-term comparison with theory

Dispersion Relation Analysis Chiral quark soliton model Lattice results LHPC Global fit

M. V. Polyakov, P. Schweitzer arXiv:1805.06596 [hep-ph]

$$\begin{array}{c|c} \mathbf{em:} \ \partial_{\mu} J_{\mathbf{em}}^{\mu} = 0 & \langle N' | J_{\mathbf{em}}^{\mu} | N \rangle & \longrightarrow \ Q = 1.602176487(40) \times 10^{-19} \mathrm{C} \\ \mu = 2.792847356(23)\mu_N \\ \hline \\ \mathbf{weak:} \ \mathrm{PCAC} & \langle N' | J_{\mathbf{weak}}^{\mu} | N \rangle & \longrightarrow \ g_A = 1.2694(28) \\ g_p = 8.06(55) \\ \hline \\ \mathbf{gravity:} \ \partial_{\mu} T_{\mathbf{grav}}^{\mu\nu} = 0 & \langle N' | T_{\mathbf{grav}}^{\mu\nu} | N \rangle & \longrightarrow \ m = 938.272013(23) \, \mathrm{MeV}/c^2 \\ J = \frac{1}{2} \\ D = ? \end{array}$$

Proton Pressure distribution results class

The pressure at the core of the proton is $\sim 10^{35}$ Pa About 10 times the pressure at the core of a neutron star

Positive pressure in the core (repulsive force) Negative pressure at the periphery: pion cloud Pressure node around $r \approx 0.6$ fm

Stability condition :
$$\int_{0}^{\infty} dt r^2 p(r) = 0$$

Rooted into Chiral Symmetry Breaking

World data fit CLAS 6 GeV data

Proton Pressure distribution results class

The pressure at the core of the proton is $\sim 10^{35}$ Pa About 10 times the pressure at the core of a neutron star

Positive pressure in the core (repulsive force) Negative pressure at the periphery: pion cloud Pressure node around $r \approx 0.6$ fm

Stability condition :
$$\int_{0}^{\infty} dt r^2 p(r) = 0$$

Rooted into Chiral Symmetry Breaking

World data fit CLAS 6 GeV data Projected CLAS12 data E12-16-010B

Summary and Outlook

- A new perspective on Exclusive Reactions Physics
- First Ever Measurement of Gravitational Form Factors
- Opens a new avenue to test confinement mechanism
- Partonic Energy Momentum Tensor
- Exciting times at the beginning of the 12 GeV high precision era!
- Will be an essential part of the EIC program as well

CLAS12 GPD program

Number	Title	Contact	Days	Energy	Target
E12-06-108	Hard Exclusive Electroproduction of π^{0} and η	Kubarovski	80	11	IH ₂
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	80	11	IH ₂
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	120	11	NH ₃
E12-11-003	DVCS on Neutron Target	Niccolai	90	11	ID ₂
E12-12-001	Timelike Compton Scat. & J/Ψ prod. in e ⁺ e ⁻	Nadel-Turonski	120	11	IH ₂
E12-12-007	Exclusive ϕ meson electroproduction	FXG	60	11	IH ₂
C12-12-010	DVCS with a transverse target	Elouadrhiri	110	11	HD-ice
E12-16-010	DVCS with CLAS12 at 6.6 GeV and 8.8 GeV	Elouadrhiri	50+50	6.6 & 8.8	IH ₂

