Recent Results of the Exclusive Single Pion Electroproduction off the Proton from CLAS

KIJUN PARK

Overview

(1) Introduction
(2) Physics Results Highlight!
(3) New Interesting Results from CLAS6!
(4) Summary

Long Range Plan 2015 ($21^{\text {st }}$ Century Nuclear Science)

1. Fully utilize programs at existing \& under construction facilities (JLab12, RHIC, NSCL, FRIB,...)
(a) How did visible matter come into being and how does it evolve ?
(b) How does subatomic matter organize itself and what phenomena emerge ?
(c) Do we understand the fundamental interactions that are basic to the structure of matter ?

How to approach ?

Present one of the many efforts

This Talk!

The most challenging problems in Hadron Physics

- Non-perturbative DCSB generates more than 98% of dress quark masses as well as dynamical structure although, Higgs mechanism $<2 \%$ in N, N^{*} masses
- Quark-gluon confinement in bayrons emerges from QCD; dressed quarks, meson-baryon cloud, dressed gluon,...

Talk by, C. Robert, V. Mokeev

- Study of the excited states of the nucleon is important step in the development of a fundamental understanding of strong interaction; QGP \rightarrow Hadrons

Talk by V. Mokeev

- The most fundamental question: " WHAT ARE THE RELEVANT DEGREE-OF-FREEDOM AT VARYING DISTANCE SCALE?"

$S U(6) \times O(3)$ Classification of Baryons

- There are questions about underlying DoF of some well known state...but still many open questions.. related with QCD, FT, CQM, LQCD ...
- Effective degrees of freedom / Transition charge densities / Running quark mass \rightarrow Nature of States

$S U(6) \times O(3)$ Classification of Baryons

- There are questions about underlying DoF of some well known state...but still many open questions.. related with QCD, FT, CQM, LQCD ...
- Effective degrees of freedom / Transition charge densities / Running quark mass \rightarrow Nature of States

Analysis Chain

QCD

Modified the original flowchart

Analysis Approaches and CLAS data analyses

- UIM, DR for $\pi^{+} n$ and $\pi^{0} p$
I. G. Aznauryan, Phys. Rev. C67, 015209 (2003).
I. G. Aznauryan et al., CLAS Coll., Phys. Rev. C80, 055203 (2009).
I. G. Aznauryan et al., CLAS Coll., Phys. Rev. C91, 045203 (2015).
- Extension of UIM, DR, Data fit for $\eta p, \omega p$
I. G. Aznauryan, Phys. Rev. C68, 065204 (2003).
H. Denizli et al., CLAS Coll., Phys. Rev. C76, 015204 (2007).
- JM-MB model, Data fit for $\pi^{+} \pi^{-} p$
V. I. Mokeev, V. D. Burkert et al., Phys. Rev. C80, 045212 (2009).
V. I. Mokeev et al., CLAS Coll., Phys. Rev. C86, 035203 (2012).
V. I. Mokeev, V. D. Burkert et al., Phys. Rev. C93, 054016 (2016).

Overview: $N N^{*}$ Electrocoupling Extraction from CLAS data
Talk by V. Mokeev
Global coupled-channel analyses for exclusive $\gamma N, \pi N, \pi \pi N, K \Lambda, K \Sigma$

Data Analyses, $\vec{e} p \rightarrow e^{\prime} \pi N$

- assume: one photon exchange approximation $\frac{d^{5} \sigma}{d E_{f} d \Omega_{e} d \Omega_{\pi}^{*}}=\Gamma_{\nu} \cdot \frac{d^{2} \sigma}{d \Omega_{\pi}^{*}}$
where,

Γ_{ν} :virtual photon flux: $\frac{\alpha}{2 \pi^{2} Q^{2}} \frac{\left(W^{2}-M_{p}^{2}\right) E_{f}}{2 M_{p} E_{e}} \frac{1}{1-\epsilon}$,
ϵ : virtual photon polarization: $\left(1+2\left(1+\frac{\nu^{2}}{Q^{2}}\right) \tan ^{2} \frac{\theta_{e}}{2}\right)^{-1}$

$$
\begin{gathered}
\frac{d^{2} \sigma}{d \Omega_{\pi}^{*}}=\frac{p_{\pi}^{*}}{k_{\pi}^{*}}\left(\sigma_{0}+h \sqrt{2 \epsilon(1-\epsilon)} \sigma_{L T}^{\prime} \sin \theta_{\pi}^{*} \sin \phi_{\pi}^{*}\right) \\
\sigma_{0}=\sigma_{U}+\epsilon \sigma_{T T} \sin ^{2} \theta_{\pi}^{*} \cos 2 \phi_{\pi}^{*}+\sqrt{2 \epsilon(1+\epsilon)} \sigma_{L T} \sin \theta_{\pi}^{*} \cos \phi_{\pi}^{*}
\end{gathered}
$$

where,
h : beam helicity state
σ_{0} : unpolarized cross-section
$\sigma_{U}=\sigma_{T}+\epsilon \sigma_{L}$
Kinematics is completely defined by five variables ($Q^{2}, W, \theta_{\pi}^{*}, \phi_{\pi}^{*}$, and ϕ_{e})

Let me briefly talk about the highlighted results ...

Let me briefly talk about the highlighted results ...

In particular, ep $\rightarrow e^{\prime} \pi^{+} n$

- Kinematic range W (excitation), Q^{2} (resolution) of $\gamma^{*} p \rightarrow n \pi^{+}$ \rightarrow From the near pion threshold to Deep Process regime

Near threshold ($W<1.15 \mathrm{GeV}$)

- Generalized form factor $\left(G_{1}\right)$ and Axial Form Factor $\left(G_{A}\right)$ near pion threshold
- Multipole fit \& LCSR, Both showed consistent results in lowest W

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for low lying $N^{*}(W=1.15-1.69 \mathrm{GeV})$

- Transition Form Factors for $N(1440) 1 / 2^{+}$(old conv: $P_{11}(1440)$)
- $A_{1 / 2}$ shows a sign change in $Q^{2} \sim 0.8 \mathrm{GeV}^{2}$
- $S_{1 / 2}$ is large at low Q^{2} and drop off smoothly with increasing Q^{2}
- A complex interplay btw inner core of quarks in the first radial excitation and external MB cloud
- LF RQM (thick red curve), Quark core in DSEQCD (thick dashed curve) MB cloud contribution (shaded band)

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for low lying $N^{*}(W=1.15-1.69 \mathrm{GeV})$

- Transition Form Factors for $N(1535) 1 / 2^{-}$(old conv: $S_{11}(1535)$)
- $\beta_{N \eta}^{P D G}=0.45-0.60 \rightarrow \beta_{N \pi}^{P D G}=0.485 \& \beta_{N \eta}^{P D G}=0.460$, excellent agreement
- Sensitive to long. as well (strong interference $S_{11}-P_{11}$)
- Previously Opposite sign of $S_{1 / 2}$!
\rightarrow Impossible to change in quark model (LFRQM failed for $S_{1 / 2}$!)
\rightarrow Combined with the difficulties in the description of
(1) large width of $S_{11}(1535) \rightarrow \eta N$
(2) large $S_{11}(1535) \rightarrow \phi N, \wedge K$ couplings
\rightarrow It shows that $3 q$ picture for $S_{11}(1535)$ should be complemented! [I.Aznuryan]

[\Downarrow solid: LFRQM, dash-dot: LCSR]

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for high lying $N^{*}(1.65<W<2.0 \mathrm{GeV})$

clas

- differential cross-sections (12 bins of ϕ^{*}) for third resonance region

(c)

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for high lying $N^{*}(1.65<W<2.0 \mathrm{GeV})$

clasi

- differential cross-sections (24 bins of ϕ^{*}) for third resonance region

Selection Rules in Symmetric Quark Model

- The first orbital excitation states

$$
\begin{aligned}
& \left|70,{ }^{2} 8,1,1, J\right\rangle-S_{11}(1535)(* * * *), D_{13}(1520)\left({ }^{* * * *}\right) \\
& \left|70,{ }^{4} 8,1,1, J\right\rangle-S_{11}(1650)(* * * *), D_{13}(1700)\left({ }^{* * *}\right), D_{15}(1675)(* * * *)
\end{aligned}
$$

- Moorhouse selection rule (Moorhouse, PRL16, 772 (1966))

$$
\begin{aligned}
& \gamma+p\left(\left|56,{ }^{2} 8 ; 0,0,1 / 2\right\rangle\right) \leftrightarrow N^{*}\left(\left|70,{ }^{4} 8\right\rangle\right): \text { vanishing TME for charge operator } \\
& \gamma+n\left(\left|56,{ }^{2} 8 ; 0,0,1 / 2\right\rangle\right) \leftrightarrow N^{*}\left(\left|70,{ }^{4} 8\right\rangle\right)
\end{aligned}
$$

- Λ selection rule (Zhao, PRD74, 094014 (2006))

$$
N^{*}\left|70,{ }^{4} 8\right\rangle \leftrightarrow K\left(K^{*}\right)+\Lambda
$$

- Faiman-Hendry selection rule (Faiman,Hendry, PR173, 1720 (1968)) $\Lambda^{*}\left|70,{ }^{4} 8\right\rangle \leftrightarrow N\left(\left|56,{ }^{2} 8 ; 0,0,1 / 2\right\rangle\right)+\bar{K}$

Moorhouse selection rule must be violated !

Spin-dependent potential from one-gluon-exchange and $S U(6) \otimes O(3)$ symmetry breaking, color hyperfine interaction $H_{\text {hyper }}$ is introducing mass splitting and configuration mixing in $S U(6)$ multiplets Isgur, Karl, PRL 41, 1269 (1978).

$$
H_{\text {hyper }}=\frac{2 \alpha_{s}}{3 m_{i} m_{j}}\left[\frac{8 \pi}{3} S_{i} \cdot S_{j} \delta^{3}\left(r_{i j}\right)+\frac{1}{r_{i j}^{3}}\left(\frac{3\left(S_{i} \cdot r_{i j}\right)\left(S_{j} \cdot r_{i j}\right)}{r_{i j}^{2}}-S_{i} \cdot S_{j}\right)\right]
$$

TABLE I. Violations of some $\operatorname{SU}(6)$ rules.

Quantity	SU(6) (Relative values)	This calculation (Relative values)	Experiment (Various units)
$A_{3 / 2^{n}\left(D_{15} \rightarrow n \gamma\right)}$	$-\alpha$	$-\alpha$	$-60 \pm 33^{\mathrm{a}}$
$A_{10}{ }^{n}\left(D_{5 \rightarrow n} \rightarrow n \gamma\right)$	-071α	-0.71α	$-33 \pm 25^{\mathrm{a}}$
$A_{3 /{ }^{p}\left(D_{15} \rightarrow p \gamma\right)}^{A_{1 / 2}\left(D_{15} \rightarrow p \gamma\right)}$	0	$+0.31 \alpha$	$+20 \pm 13^{\mathrm{a}}$
$A_{\left(D_{15} \rightarrow K N\right)}$	0	$+0.22 \alpha$	$+19 \pm 14^{\mathrm{a}}$
$A\left(D_{05} \rightarrow \bar{K} N\right)$	0	β	$+0.41 \pm 0.03^{\mathrm{b}}$
$\left\langle\sum e_{i} r_{i}{ }^{2}\right\rangle_{p}$	γ	-0.28β	$-0.09 \pm 0.04^{\mathrm{c}}$
$\left\langle\sum e_{i} r_{i}{ }^{2}\right\rangle_{n}$	0	γ	$+0.82 \pm 0.02^{\mathrm{d}}$

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for high lying $N^{*}(W=1.65-2.0 \mathrm{GeV})$

- Transition Form Factors for $N(1675) 5 / 2^{-}$(old conv: $D_{15}(1675)$)
- SQTM, Moorhouse selection rule: suppression Transverse Amplitudes
\rightarrow Solid: M. M. Gianini/E. Santopinto (hQCM)
\rightarrow dash: D.Merten\& U.Loring(2003)
- Non-quark contributions dominance, A strong coupling $A_{1 / 2}$ for $Q^{2}<4 \mathrm{GeV}^{2}$
- Significant $M B$ contribution from the dynamical coupled-channel model \rightarrow (dash-dot: B. Julia-Diaz, T-S. H. Lee, A. Matsuyama)
- A strong suppression of $A_{3 / 2}$ for $Q^{2}>1.8 \mathrm{GeV}^{2}$

Deep Inelastic Scattering Regime ($W>2.0 \mathrm{GeV}$)

- Transition between hadronic and partonic picture of strong interaction
- GPD
\rightarrow Correlations of longitudinal momentum fraction with transverse spatial position
- DVMP: $N\left(e, e^{\prime} N M\right), M=\pi, \rho, \phi, \ldots$ \rightarrow Connection to the transversity GPD Blue box \rightarrow
[K.Park, et al., Eur. Phys. J. A49 16, (2013)]

Hard Exclusive Forward, Large angle $\gamma^{*} p \rightarrow n \pi^{+}$

- Solid $(d \sigma / d t)$, dashed curves $\left(d \sigma_{L} / d t\right)$
- Magenta curves:
M. Kaskulov, Duality model
\rightarrow Transverse: resonance excitation
\rightarrow Longitudinal: t-channel meson exchange
- Blue curves: G-K :

Transversity of GPDs
\rightarrow Partonic model (handbag diagram) (But w/o adjusting Jlab kinematics)

Hard Exclusive Forward, Large-angle $\gamma^{*} p \rightarrow n \pi^{+}$

- Solid ($d \sigma / d t$), dashed curves $\left(d \sigma_{L} / d t\right)$
- Red curves: J. M. Laget, Regge-model
- Blue curves: M. Kaskulov, Hybrid (hadron-parton) model

[^0]
New Results 2018 !!! \& Upcoming New Results 2019 !!!

Hard Exclusive Backward angle $\gamma^{*} p \rightarrow n \pi^{+}$

Structure functions vs. πN-TDA calculation

- $\sigma_{T}+\epsilon \sigma_{L}(\bullet), \sigma_{T T}(\square)$, and $\sigma_{L T}(\mathbf{\Delta})$
- A recent theoretical calculation as a function of $\xi \simeq Q^{2} /\left(Q^{2}+2 W^{2}\right)$
- Nucleon to meson TDAs provide new information about correlation of partons inside hadrons
- Curves: the contribution of πN-TDA model Red band: BLW NNLO ${ }^{a}$, dark blue band: COZ^{b}, and light blue band: KS ${ }^{c}$
- Nucleon pole exchange in u-channel contribution is determinant for smaller ξ (D-term GPDs)
- Theoretical understanding is growing up: spectral representation for πN TDA based on quadruple distributions; factorized Ansatz for quadruple distributions with input at $\xi=1$.
- Open questions: proof of factorization theorems, interpretation in the impact parameter space, analytic properties of the amplitude
${ }^{a}$ A. Lenz, et al., Phys.Rev. D79, 093007, (2009)
${ }^{b}$ V.L. Chernyak, et al., Z. Phys. C42, 583 (1989).
${ }^{c}$ I.D. King et al., Nucl. Phys. B279, 785, (1987)

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n, A_{L u}$ for high W, PRELIMINARY

Curves: solid-MAID2007, dashed-JANR, Blue: Phys. Rev. C77 015208, (2008), Black points: current work K. Park \& P. Bosted 2018

$A_{L U}, \sigma_{L T^{\prime}}$ for high W, PRELIMINARY el-6a

$A_{L U}$

$\sin \phi^{*} \sigma_{L T P}$

$\sigma_{L T^{\prime}}$ vs. $\cos \theta_{\pi}^{*}, \mathrm{MAID} 2007$, PRELIMINARY

Red curves: Legendre fit, Black curves: MAID2007

$$
Q^{2}=2.0 \mathrm{GeV}^{2}
$$

Moments $D_{0}^{L T^{\prime}}$

Summary

- Extraction of the transition form factor should be carried out through the differential cross-sections/asymmetries measurements for near full angles and large kinematics W, Q^{2}
- Precision data for $\gamma^{*} p \rightarrow n \pi^{+}$from CLAS allows to extract the helicity amplitudes for various resonance states, $N(1440) 1 / 2^{+}$, $N(1520) 3 / 2^{-}, N(1535) 1 / 2^{-}, N(1675) 5 / 2^{-}, N(1680) 5 / 2^{+}$, and $N(1710) 1 / 2^{+}$, Near Threshold (GFF, G_{A}), and DIS...
- Coupled-channel analysis (including $\pi N, \pi \pi N, K Y, \ldots$) is crucial in particular high W and this will improve considerably our knowledge on N^{*}-state electro-couplings.
$\oint \S$ Full Mass Spectrum with Q^{2} evolution and Coupled-Channel Analyses help us to map out nucleon structure in terms of the effective degree of freedom $\S \S$

Analysis Approaches

- Two different approaches: UIM, DR UIM
\rightarrow BG UIM is built from nucleon exchange in s-, u - and π, ω, ρ exchange in t - channel
\rightarrow Unitarization of multipole amplitudes in the K-matrix approximation
\rightarrow Resonance contributions are parameterized in the unified BW form with energy dependence

DR

\rightarrow Fixed- t dispersion relation for the invariant amplitude
\rightarrow Re-Amplitude to Born-term (nucleon exchange in s-, u-, π exchange in t-channel)
\rightarrow Integral Im-Amplitude with the isospin structure

- Two model-uncertainties
\rightarrow BG determination in the UIM and Born term in DR
\rightarrow A width and mass of resonances from PDG
- Take into account...
$\rightarrow \mathrm{All}(13)^{* * * *}$ and ${ }^{* * *}$ states in the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$
$\rightarrow \Delta(1905) F_{35}, \Delta(1950) F_{37}$ in $4^{t h}$ resonance region
- Same BR from PDG2012

Reaction, $\vec{e} p \rightarrow e^{\prime} \pi^{+} n-$ SKIP

- $E_{i, f}$: the initial/final energy of electron
- θ_{e} : the electron scattering angle
- $p_{\gamma, i}:$ the virtual photon/target four-momenta
- $W^{2}=\left(p_{\gamma}+p_{i}\right)^{2}=M_{p}^{2}+2 M_{p} \nu-Q^{2}$
- ν : transferred energy $=E_{i}-E_{f}=\frac{p_{i} \cdot p_{\gamma}}{M_{p}}$
- Q^{2} : virtuality of the exchanged photon $=-\left(k_{i}-k_{f}\right)^{2}=4 E_{i} E_{f} \sin ^{2}\left(\theta_{e} / 2\right)$
- θ_{π}^{*} : the angle between the virtual photon and the hadron (π^{+})
- ϕ_{π}^{*} : the angle between the electron scattering plane and the hadronic production plane

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for low lying $N^{*}(W=1.15-1.69 \mathrm{GeV})$

- Transition Form Factors for $N(1520) 3 / 2^{-}$(old conv: $D_{13}(1520)$)
- $A_{1 / 2}$ is large at high $Q^{2}, A_{3 / 2}$ is small at high Q^{2}

[$\mathbf{\Delta}: \operatorname{RPP}(2014)$,
$\bigcirc, \square:$ DESY, NINA data]

$$
\begin{gathered}
\frac{A_{1 / 2}^{D 13}}{A_{3 / 2}^{D 13}}=\frac{-1}{\sqrt{3}}\left(\frac{Q^{2}}{\alpha}-1\right) \\
A_{h e l}=\frac{A_{1 / 2}^{2}-A_{3 / 2}^{2}}{A_{1 / 2}^{2}+A_{3 / 2}^{2}}
\end{gathered}
$$

- Asymptotic Q^{2} behavior of $A_{\text {hel }}$ vs. Q^{2}
- NRQ simple harmonic oscillator model (solid line) with spin, orbit flip amplitudes
- $A_{1 / 2} \ll A_{3 / 2}$ at low $Q^{2}, A_{3 / 2} \ll A_{1 / 2}$ at high Q^{2}

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for high lying $N^{*}(W=1.65-2.0 \mathrm{GeV})$

- Differential cross-sections for third resonance region

 - dash: MAID07, dash-dot: MAID03, dot: DMT

ㅌㅡㅡ

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for high lying $N^{*}(W=1.65-2.0 \mathrm{GeV})$

- Transition Form Factors for $N(1680) 5 / 2^{+}$(old conv: $F_{15}(1680)$) \rightarrow © RPP(PDG:2014), \triangle V. Mokeev\& I.G.Aznauryan(2013), \square I.G.Aznauryan(2005)
\rightarrow Solid: M.M.Gianini/E.Santopinto (hQCM), dash-dot: Z.Lee\& F.Close(1990), dash: D.Merten\& U.Loring(2003)
- All models estimates amplitudes larger $A_{1 / 2}$ (lower $A_{3 / 2}$) than data
- MB contribution should be taken into account ?

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for high lying $N^{*}(W=1.65-2.0 \mathrm{GeV})$

- Helicity asymmetry shows a very slow rise at $Q^{2}>2 \mathrm{GeV}^{2}$
- Interesting of helicity asymmetry $Q^{2}>5 \mathrm{GeV}^{2}$?
\rightarrow CLAS12

$$
A_{h e l}=\frac{A_{1 / 2}^{2}-A_{3 / 2}^{2}}{A_{1 / 2}^{2}+A_{3 / 2}^{2}}
$$

- \square CLAS single- π and 2π electroproduction
- \triangle RPP2014 at $Q^{2}=0$
- Solid: M.M.Gianini/E.Santopinto (hQCM), dash-dot: Z.Lee\& F.Close(1990), dash: D.Merten\& U.Loring(2003)

$\vec{e} p \rightarrow e^{\prime} \pi^{+} n$ for high lying $N^{*}(W=1.65-2.0 \mathrm{GeV})$

- Transition Form Factors for $N(1710) 1 / 2^{+}$(old conv: $P_{11}(1710)$)
- Finite size of $A_{1 / 2}$ for $Q^{2}<2.5 \mathrm{GeV}^{2}$
- Finite size and negative of $S_{1 / 2}$ for all given $Q^{2} \mathrm{GeV}^{2}$

$\sigma_{L T^{\prime}}$ vs. $\cos \theta_{\pi}^{*}$ PRELIMINARY

Red curves: Legendre fit
$\mathrm{W}=1.77 \mathrm{GeV}$

$$
W=1.77(\mathrm{GeV})
$$

Func $=D_{0}^{\prime}+D_{1}{ }^{\prime} * \mathrm{P}_{1}\left(\cos \vartheta_{\pi}^{*}\right)$
$+\mathrm{D}_{2}{ }^{*} \mathrm{~L} \mathrm{P}_{2}\left(\cos \vartheta_{\pi}{ }^{*}\right)$
$+\mathrm{D}_{3}{ }^{*} \mathrm{~L} \mathrm{P}_{3}\left(\cos \vartheta_{n}{ }^{*}\right)$
$+\mathrm{D}_{4}^{*} * \mathrm{LP}_{1}\left(\cos \vartheta_{n}^{*}\right)$
e1-6a experiment
$\mathrm{W}=1.87 \mathrm{GeV}$

$$
W=1.87(\mathrm{GeV})
$$

Func $=D_{0}^{\prime}+D_{1}^{\prime} * L P_{1}\left(\cos v_{\pi}^{*}\right)$
$+\mathrm{D}_{2}{ }^{*} \div \mathrm{LP}_{2}\left(\cos \vartheta_{n}{ }^{\circ}\right)$
$+D_{3}{ }^{\prime} * \mathrm{~L}_{3}\left(\cos \vartheta_{n}{ }^{*}\right)$
$+\mathrm{D}_{4}^{\prime} \neq \mathrm{LP}_{4}\left(\cos \vartheta_{n}{ }^{*}\right)$
e1-6a experiment

Moments $D^{L T^{\prime}}$ vs. W, Q^{2} PRELIMINARY

Observation: interesting behavior above $W>1.8 \mathrm{GeV}$

Moments $D_{0}^{L T^{\prime}}$

Moments $D_{1}^{L T^{\prime}}$

[^0]: ** Hybrid: The partonic part of production mechanism is described by DIS quark knock out reaction is followed by string

