

Excitations of the Nucleon – N^* spectroscopy with class

A.M. Sandorfi

Thomas Jefferson National Accelerator Facility, Newport News VA

N* resonances in the early universe

Dramatic chiral crossover at about $t_0 + 1 \ \mu s \iff T_c = 154 \pm 9 \ MeV$

- Chiral symmetry is broken
- quarks acquire mass

- color confinement emerges
- copious production of hadronic resonances

- Paolo Neruda (paraphrased):
- " Make you choice in life, but then embrace the consequences."

⇔ leaves little room for desperation or depression !

Where are these N* resonances ?

- ...up to a decade ago: only the lowest few in each band correspond to 4* or 3* PDG states
- Vintage explanations: { eg. Anselmino et al., Rev. Mod. Phys. 65 (93) 1199 }
 - 2 quarks in a baryon quasibound in a color isotriplet [diQ+q ⇔ isosinglet]
 - internal "diQuark" excitations frozen out in spin =0, isospin =0 states
 - \Leftrightarrow fewer degrees of freedom \Leftrightarrow fewer states

Where are these N* resonances ?

- ...up to a decade ago: only the lowest few in each band correspond to 4* or 3* PDG states
- Vintage explanations: { eg. Anselmino et al., Rev. Mod. Phys. 65 (93) 1199 }
 - 2 quarks in a baryon quasibound in a color isotriplet [diQ+q ⇔ isosinglet]
 - internal "diQuark" excitations frozen out in spin =0, isospin =0 states
 - \Leftrightarrow fewer degrees of freedom \Leftrightarrow fewer states

N* s that just can't go away ...

DSE & LQCD calculations of N* spectrum:

- axial-vector color-triplet q-q correlations are attractive
 - diQuarks correlations must exist
 - BUT, they are not point-like, eg. r[ud]₁ ~ pion radius {Few Body Sys 35 (04); PRL97(06)}
 ⇔ internal diQuark excitations are NOT frozen out
 ⇔ diQuark correlations are already observed in the LQCD calculations

LQCD calculations of the T $_{c}$ phase transition in the ~1 μs universe:

PDG states alone are insufficient
 full suite of QM/LQCD states needed
 ⇒ ~ 25% baryon pressure increase needed from as yet unobserved N*s
 {Bazavov et al., PRL 113 (2014) 072001}

Sandorfi - HEP'18 - Jan, 2018

120

130

140

150

170

160

goals of the N* program with CLAS at Jefferson Lab

- dressings of strongQCD (non-perturbative) generate a running quark-mass function
 ⇔ "constituent-like" correlations at low p that generate the N* spectrum
 ⇔ account for ~98% of the visible mass
 - (Higgs mechanism is the other ~2%)
- CLAS goals:

Jefferson Lab

- elucidate the structure of
 N* states that are observed,
 and find the ones that aren't !
- clarify the role of complex correlations:
 - meson cloud
 - dynamical meson-baryon "molecules"

Challenge $#1 - N^*$ resonances are broad and overlapping

• $\pi N \rightarrow \pi N \Leftrightarrow$ chief source of pre-2008 PDG states

- 2 complex spin-dependent amplitudes
 ⇔ requires 3 observables to define the full amplitude, within a phase
- <u>there are only 4 observables (</u> σ , P, **R**, A)
- data base: ~40,000 pts on σ; ~8300 pts on P

Challenge $#1 - N^*$ resonances are broad and overlapping

• $\pi N \rightarrow \pi N \Leftrightarrow$ chief source of pre-2008 PDG states

- 2 complex spin-dependent amplitudes
 ⇔ requires 3 observables to define the full amplitude, within a phase
- <u>there are only 4 observables (</u> σ , P, **R**, A)
- almost no data on **R** & **A** (~30 pts above the Δ)

⇔ amplitude is under-determined
⇔ very difficult to isolate weaker states

Challenge $#1 - N^*$ resonances are broad and overlapping

• $\pi N \rightarrow \pi N \Leftrightarrow$ chief source of pre-2008 PDG states

- 2 complex spin-dependent amplitudes
 ⇔ requires 3 observables to define the full amplitude, within a phase
- <u>there are only 4 observables (</u> σ , P, **R**, A)
- almost no data on $\mathbf{R} \& \mathbf{A}$ (~30 pts above the Δ)

amplitude is under-determined
 very difficult to isolate weaker states

• $\gamma N \rightarrow \pi N, \eta N, KY, ...$

Jefferson Lab

- 4 complex amplitudes
 ⇔ requires 7 (8) observables to define the full amplitude, within a phase
- there are 16 observables:
 - $(\sigma, \Sigma, T, P, E, G, F, H, O_{x'}, O_{z'}, C_{x'}, C_{z'}, L_{x'}, L_{z'}, T_{x'}, T_{z'})$

 \Leftrightarrow possible to over-determine the amplitude

Measurements of "everything" in J=0⁻ meson photo-production

												[SHKL, .	J Phys G	38 (11)	053001]
Photon beam		Target		Recoil		Target - Recoil										
					<i>x'</i>	у'	Z'	<i>x'</i>	<i>x'</i>	<i>x'</i>	У'	у'	y'	Ζ'	Ζ'	<i>z</i> ′
		x	У	Ζ				x	У	Z	x	У	Ζ	x	У	Ζ
unpolarized	σ_0		T			Р	*****	$T_{x'}$, 41,000,1000,1000,1000,1000,1000,1000	$L_{x'}$		Σ		T_z ,		<i>L</i> _z ,
$P_L^{\gamma} sin(2\phi_{\gamma})$		Н		G	<i>O</i> _{<i>x</i>[,]}		O z',		C_{z} ,		E		F		$-C_{x'}$	
$P_L^{\gamma} \cos(2\phi_{\gamma})$	-Σ		- P			- T		$-L_{z'}$		T _z ,		$-\sigma_0$		$L_{x'}$		$-T_{x'}$
circular P_c^{γ}		F		- E	$C_{x'}$		<i>C</i> _z ,		- O z'		G		-H		0 _{x'}	

- 16 different observables
- combine asymmetries for different final states in a coupled-channel PWA
 - dentify N* resonances
 extract γNN* couplings

Challenge #2: the dressings of sQCD

• meson-loop "dressings" of the Electromagnetic vertex affect the dynamical properties (excitation mechanism) and determine Q² evolution, but not spectral properties • coupled-channel "dressings" of the strong vertex determine the N* spectral properties (mass/pole positions, widths)

Challenge #2: the dressings of sQCD – eg. the P_{11} Roper

N* resonance ⇔ s-channel pole

• coupled-channel "dressings" of the strong vertex determine the N* spectral properties

• dynamic coupled-channel model of πN , $\gamma N \rightarrow \pi N$, $\pi \Delta$, ηN , KY[EBAC/AO, PRL **104** (2010) 042302]

⇔ "bare" N* excitation at 1763 evolves to doublet of poles at ~1360

no PWA of a single channel can be sufficient with such couplings

Sandorfi - HEP'18 – Jan, 2018

Challenge #2: the dressings of sQCD – eg. the P_{11} Roper

N* resonance ⇔ s-channel pole

• meson-loop "dressings" of the Electromagnetic vertex affect the dynamical properties (excitation mechanism) and determine Q² evolution, but not spectral properties

• Q^2 evolution demonstrates the basic character of the second $J^{\pi}=1/2^+$ state of the nucleon as a radial excitation of a dressed 3q core

[Chen, El-Bennich, Roberts, et al., arXiv:1711.03142]

[AMS, J. Phys. Conf. 424 (2013) 012001, & ref therein]

CEBAF Large Acceptance Spectrometer (CLAS): 1997 - 2012

• tagged photon beams

circular polarization _ from brem of polarized e⁻

linear polarization from e⁻ brem in diamond

longitudinally polarized e⁻ beams

Gas Cherenkov counters e/π separation, 256 PMTs

Sandorfi - HEP'18 - Jan, 2018

 $\gamma p \rightarrow \pi^+(n)$

g9a: Strauch et al., PL B750 (2015) 53

- target: 15mm Ø x 50mm
- material: C₄H₉OH (butanol)
- p-dilution: 10/74
- P(H) = 83%
- T₁ (1/e spin relaxation) = 115 d (+h)
 = 65 d (-h)
- repolarize ~ weekly

FROST: NIM A684 (2012) 27

g14: Ho et al., PRL 118 (2017) 242002

- target: 15mm Ø x 50mm
- material: solid HD
- p-dilution: 1/2; n-dilution: 1/1
- P(H) = 60% or P(D) = 30%
- T_1 (1/e spin relaxation) ~ years

HDice-I: NIM A737 (2014) 107

HDice-II: NIM A815 (2016) 31

Sandorfi - HEP'18-Jan, 2018

CLAS-g8b: prc88 (2013) 065203

Sandorfi - HEP'18 - Jan, 2018

CLAS-g9a: Phys Lett **B**750 (2015) 53

Photon beam		Targe	t	Recoil			
					<i>x'</i>	у'	Z'
		x	У	Z			
unpolarized	σ_0		T			Р	
$P_L^{\gamma} sin(2\phi_{\gamma})$		H		G	$O_{x'}$		O z'
$P_L^{\gamma} \cos(2\phi_{\gamma})$	-Σ		- P			- T	
circular P_c^{γ}		F		- E	$C_{x'}$		<i>C</i> _{<i>z</i>} ,

Sandorfi - HEP'18 - Jan, 2018

$T(\gamma \vec{p} \rightarrow \pi^+ n)$

CLAS-g9b (prelim): courtesy of M. Dugger

Sandorfi - HEP'18 – Jan, 2018

Jefferson Lab

CLAS-g9b (prelim): courtesy of M. Dugger

Sandorfi - HEP'18 – Jan, 2018

$P_{\Lambda}\left(\gamma p \rightarrow K^{+}\vec{\Lambda}\right)$

Sandorfi - HEP'18 - Jan, 2018

close

 $C_x, C_z(\vec{\gamma}p \rightarrow K^+\vec{\Lambda})$

CLAS-g1c: Phys Rev C75 (2007) 035205

Sandorfi - HEP'18 – Jan, 2018

 $O_x, O_z(\vec{\gamma}p \rightarrow K^+\vec{\Lambda})$

CLAS-g8: Phys Rev C93 (2016) 065201

Sandorfi - HEP'18 – Jan, 2018

Final states and observables measured in CLAS

Confirmation of new states near W=1900

- Bonn-Gatchina + Zagreb PWA:
 - CLAS $\gamma p \rightarrow K^{+}\Lambda$ used to fix L=0,1 multipoles
 - used in a coupled-channel search for poles
 - \Leftrightarrow reveals new N*s that couple strongly to KA (but weakly to πN ; not evident in $\pi N \rightarrow \pi N$)

Confirmation of 1-star $\Delta(2200)7/2^{-}$ in coupled-channel PWA cost

- well established Δ(1950) 7/2⁺ [PDG ****] missing a parity-partner
 ⇔ possible weak Δ(2200) 7/2⁻ [PDG *]?
- Bonn-Gatchina coupled-channel PWA of CLAS and CBELSA/TAPS data from many channels [Phys Lett B766 (2017) 357]
 - ⇔ requires **Δ(2176) 7/2**-
 - small πN branch \Leftrightarrow very weak in πN scattering
 - but reflected in the $\gamma N \rightarrow \pi N$ "E" asymmetries
- no evidence of mass-degenerate partners near 1950 (arguing against Chiral restoration)

• the electromagnetic interactions do not conserve isospin

$$\begin{aligned} \mathcal{A}_{\gamma p \to \pi^{+} n} &= \sqrt{2} \left\{ \mathcal{A}_{p}^{I=1/2} - \frac{1}{3} \mathcal{A}^{I=3/2} \right\} \\ \mathcal{A}_{\gamma n \to \pi^{-} p} &= \sqrt{2} \left\{ \mathcal{A}_{n}^{I=1/2} + \frac{1}{3} \mathcal{A}^{I=3/2} \right\} \end{aligned} \Leftrightarrow \text{ proton data determine } \mathcal{A}^{I=3/2} \end{aligned}$$

⇒ both proton and neutron target data needed for the I= ½ amplitudes

γ+n data base is very sparse
 ⇔ γnN* couplings very poorly determined

 $\Leftrightarrow \text{CLAS run periods } gl0(\gamma + D), \\ gl3(\vec{\gamma} + D), \\ gl4(\vec{\gamma} + \vec{D})$

$\sigma(\gamma n \rightarrow \pi^- p)$

CLAS-g13: 8424 kin pts [Phys Rev C (in press)]

Sandorfi - HEP'18 – Jan, 2018

Deuteron reactions restricted to create an effective neutron target

select events for which the proton in Deuterium is a passive "spectator"
 ⇔ key variable is its momentum,
 eg. equivalently, the momentum of the undetected proton in γ +n(p) → π⁻ p(p)

suse the data itself to determine the kinematic region in which a measured observable is stable

- eg. the beam-target helicity asymmetry "E" : [PRL **118** (2017) 242002] O $|P_{miss}| < 0.1 \text{ GeV/c}$ -0.2 <E> -0.4with these tight requirements, -0.6 the D-state gives no contribution -0.8 0.05 0.1 0.2 0.15 n (GeV/c) |**p**_{miss}|
- NB: stable region is observable dependent

Jefferson Lab

Sandorfi - HEP'18 - Jan, 2018

Evidence for an N(1975)3/2+ from E $(\vec{\gamma}\vec{n} \rightarrow \pi^{-}p)$

Jefferson Lab

A decade of advances in mapping the N* spectrum

N(W) J ^π	PDG'08	PDG'17	+ recent	γΝ	πN	KY
N(1710)1/2 ⁺	***	****		<i>」 」 」 」 」 」 」 」 」 」</i>	$\int \int \int \int$	
N(1860)1/2 ⁺			+ 🗸	1	1	1
N(1860)5/2 ⁺		**			<i>\</i>	
N(1875)3/2		***		<i>」 」 」 」</i>	1	$\int \int \int$
N(1880)1/2 ⁺		**		1	1	1
N(1895)1/2		**	+ 🗸	11	1	11
N(1900)3/2 ⁺	**	***	+ 🗸	<i>」 」 」 」</i>	\checkmark	$\int \int \int$
N(1975)3/2 +			+ 🗸	1	\checkmark	
N(2040)3/2 ⁺		*			\checkmark	
N(2060)5/2-		**		\	\checkmark	\checkmark
N(2100)1/2 ⁺	*	*	+ 🗸	1	\checkmark	
N(2120)3/2-		**		\	\checkmark	\checkmark
N(2300)1/2 ⁺		**			\checkmark	
N(2570)5/2 ⁻		**			\checkmark	
∆(1940)3/2 [–]	*	**		11	\checkmark	
∆(2200)7/2 [–]	*	*	+ 🗸	1	1	

Probing the dynamics of N^* excitation with Q^2 in (e,e') C_{Q}

Sandorfi - HEP'18 - Jan, 2018

Published CLAS data on exclusive meson electroproduction from protons

Hadronic final state	Covered W range (GeV)	Covered Q^2 range (GeV ² /c ²)	Measured observables	<u>Observables</u> • cross section		
π +n	1.1-1.38 1.1-1.55 1.1-1.7 1.6-2.0	0.16-0.36 0.3-0.6 1.7-4.5 1.8-4.5	$\begin{array}{c} \mathrm{d}\sigma/\Omega\\ \mathrm{d}\sigma/\Omega\\ \mathrm{d}\sigma/\Omega, \mathrm{A_b}\\ \mathrm{d}\sigma/\Omega\end{array}$	 angular distributions Longitudinal Beam,Target, and 		
π ⁰ p	1.1-1.38 1.1-1.68 1.1-1.39	0.16-0.36 0.4-1.8 3.0-6.0	$\begin{array}{c} d\sigma/\Omega\\ d\sigma/\Omega, A_b, A_t, A_{bt}\\ d\sigma/\Omega \end{array}$	 Beam-Target asy recoil and transfer 		
η p	1.5-2.3	0.2-3.1	$d\sigma/\Omega$	polarization asy		
K ⁺ Λ	thresh-2.6	1.40-3.90 0.70-5.40	$d\sigma/\Omega$ P ⁰ , P'	⇔ nearly full phase		
K+Σ ⁰	thresh-2.6	1.40-3.90 0.70-5.40	$d\sigma/\Omega$ P'	space coverage for final hadron channel		
π+π -p	1.3-1.6 1.4-2.1 1.4-2.0	0.2-0.6 0.5-1.5 2.0-5.0	Nine 1-fold differential cross sections			

Q² evolution of photo → electro-couplings probe the N* excitation mechanisms

V. Burkert & C. Roberts, arXiv:1710.02549

LF RQM: I. Aznauryan, V.B. arXiv:1603.06692 DSE: J. Segovia, C.D. Roberts et al., PRC94 (2016) 042201

→ Non-quark contributions are significant at $Q^2 < 2.0 \text{ GeV}^2$.

➔ The 1st radial excitation of the q³ core emerges as the probe penetrates the MB cloud

"Nature" of the Roper – its core is the 1st radial excitation of the nucleon.

Jefferson Lab

V. Burkert, NSTAR'2017

- consistent couplings extracted from different decay channels (again)
- non-quark contributions are significant for Q² < 1 GeV²
- LF RQM describes data for Q² > 1.5 GeV² [I. Aznauryan & V. Burkert, arXiv:1603.06692]
- → N(1535)1/2⁺ is consistent with the 1st orbital excitation of the nucleon

V. Burkert, NSTAR'2017

- $\gamma p N^* (Q^2 = 0) >> RQM$
 - ⇔ RQM is suppressed by selection rules, if only a single quark is excited

[*Moorhouse, Phys Rev Lett* **16** (1966) 772] [*Burkert et al, Phys Rev* **C67** (2003) 035204]

(NOT a meson-Baryon molecule)

• BUT, non-quark (meson-baryon cloud) contributions are significant for all Q²

V. Burkert, NSTAR'2017

$\gamma^*N \rightarrow N^*$ reveals a running quark-mass

 $\gamma * N \rightarrow N^*$ transitions are sensitive to long-range QCD and probe the running quark mass function CLAS $G_M(N \rightarrow \Delta)$ (normalized to dipole)

"frozen" momentum-independent M_q [Wilson et al., Phys Rev C85 (2012)025205]
 ⇔ M_q~ 300 MeV, dynamically generated by contact interactions btw current quarks

dressed quark mass-function $M_q(p_q)$

[Roberts, J. Phys. Conf. **706** (2016) 022003] [Segovia et al., Few Body Phys **55** (2014) 1185]

- LQCD has confirmed Quark Model predictions for large numbers of N* states
 ⇔ no reduction in the effective degrees of freedom within the Nucleon
 ⇔ full LQCD/QM range of states required to provide the baryon pressure at T_c
- polarization in photo-production reactions can over-determine the amplitude
 - ⇔ extensive data on large numbers of polarization observables and final states have been collected and are in various stages of analysis
 ⇔ coupled-channel PWA have been essential in disentangling the N* spectrum
 ⇔ large numbers of new candidate states have been identified
- Q² dependence of electro-production couplings provide insights to the role of the meson cloud and of the N* excitation mechanism

 \Leftrightarrow large data sets have been collected and analysis is ongoing ... \Leftrightarrow meson cloud effects are generally very strong below ~ 1 – 2 GeV²

⇔ transitions to N*s confirm a running quark mass-function

