Excitations of the Nucleon - \mathbf{N}^{*} spectroscopy with clos

A.M. Sandorfi

Thomas Jefferson National Accelerator Facility, Newport News VA

\mathbb{N}^{*} resonances in the early universe

Dramatic chiral crossover at about $t_{0}+1 \mu \mathrm{~s} \Leftrightarrow T_{c}=154 \pm 9 \mathrm{MeV}$

- Chiral symmetry is broken
- quarks acquire mass

- color confinement emerges
- copious production of hadronic resonances
- Paolo Neruda (paraphrased):
" Make you choice in life, but then embrace the consequences. "
\Leftrightarrow leaves little room for desperation or depression !

Where are these N^{*} resonances?

- ...up to a decade ago: only the lowest few in each band correspond to 4* or 3* PDG states
- Vintage explanations: \{eg.Anselmino et al, Rev. Mod. Phys. 65 (93) 1199\}
- 2 quarks in a baryon quasibound in a color isotriplet $[d i Q+q \Leftrightarrow$ isosinglet]
- internal "diQuark" excitations frozen out in spin $=0$, isospin $=0$ states \Leftrightarrow fewer degrees of freedom \Leftrightarrow fewer states

Where are these N^{*} resonances?

- ...up to a decade ago: only the lowest few in each band correspond to 4* or 3* PDG states
- Vintage explanations: \{ eg.Anselmino et al, Rev. Mod. Phys. 65 (93) 1199\}
- 2 quarks in a baryon quasibound in a color isotriplet $[d i Q+q \Leftrightarrow$ isosinglet]
- internal "diQuark" excitations frozen out in spin =0, isospin =0 states \Leftrightarrow fewer degrees of freedom \Leftrightarrow fewer states

N^{*} s that just can't go away ...

DSE \& LQCD calculations of \mathbf{N}^{*} spectrum:

- axial-vector color-triplet q-q correlations are attractive
- diQuarks correlations must exist
- BUT, they are not point-like, eg.r $[u d]_{1} \sim$ pion radius $\{$ Few Body Sys 35 (04); PRL97(00)\}
\Leftrightarrow internal diQuark excitations are NOT frozen out
\Leftrightarrow diQuark correlations are already observed in the LQCD calculations

LQCD calculations of the T_{c} phase transition in the $\sim 1 \mu$ universe:

- PDG states alone are insufficient
- full suite of $Q M / L Q C D$ states needed $\Leftrightarrow \sim 25 \%$ baryon pressure increase needed from as yet unobserved N^{*} S
\{ Bazavov et al., PRL 113 (2014) 072001 \}

goals of the N^{*} program with CLAS at Jefferson Lab

- dressings of strongQCD (non-perturbative) generate a running quark-mass function \Leftrightarrow "constituent-like" correlations at low \boldsymbol{p}
that generate the N^{*} spectrum
\Leftrightarrow account for $\sim 98 \%$ of the visible mass (Higgs mechanism is the other $\sim 2 \%$)

- CLAS goals:

- elucidate the structure of N^{*} states that are observed, and find the ones that aren't!
- clarify the role of complex correlations:

"constituent"
range
Higgs
- meson cloud
- dynamical meson-baryon "molecules"

sQCD emerged $a t \sim t_{0}+1 \mu s$ when $N^{*} s$ filled the Universe

Challenge \#1 - N^{*} resonances are broad and overlapping

- $\pi N \rightarrow \pi N \Leftrightarrow$ chief source of pre-2008 PDG states
- 2 complex spin-dependent amplitudes \Leftrightarrow requires 3 observables to define the full amplitude, within a phase
- there are only 4 observables $(\sigma, P, \boldsymbol{R}, \boldsymbol{A})$
- data base: $\sim 40,000$ pts on $\boldsymbol{\sigma} ; \sim 8300$ pts on \boldsymbol{P}

- $\pi N \rightarrow \pi N \Leftrightarrow$ chief source of pre-2008 PDG states
- 2 complex spin-dependent amplitudes \Leftrightarrow requires 3 observables to define the full amplitude, within a phase
- there are only 4 observables $(\sigma, P, \boldsymbol{R}, \boldsymbol{A})$
- almost no data on $\boldsymbol{R} \& \boldsymbol{A}(\sim 30$ pts above the $\Delta)$ \Leftrightarrow amplitude is under-determined
\Leftrightarrow very difficult to isolate weaker states

$$
\sigma_{\text {tot }}(\pi+N)
$$

Challenge \#1 - N^{*} resonances are broad and overlapping

- $\pi N \rightarrow \pi N \Leftrightarrow$ chief source of pre-2008 PDG states
- 2 complex spin-dependent amplitudes
\Leftrightarrow requires 3 observables to define the full amplitude, within a phase
- there are only 4 observables $(\sigma, P, \boldsymbol{R}, \boldsymbol{A})$
- almost no data on $\boldsymbol{R} \& \boldsymbol{A}(\sim 30$ pts above the $\Delta)$
\Leftrightarrow amplitude is under-determined
\Leftrightarrow very difficult to isolate weaker states
- $\boldsymbol{\gamma N} \boldsymbol{\rightarrow} \boldsymbol{\pi} \mathbf{N}, \boldsymbol{\eta} \mathbf{N}, \boldsymbol{K} \boldsymbol{Y}, \ldots$
- 4 complex amplitudes
\Leftrightarrow requires 7 (8) observables to define the full amplitude, within a phase
- there are 16 observables:
($\sigma, \Sigma, T, P, E, G, F, H, O_{x^{\prime}}, O_{z^{\prime}}, C_{x^{\prime}}, C_{z^{\prime}}, L_{x^{\prime}}, L_{z^{\prime}}, T_{x^{\prime}}, T_{z^{\prime}}$)
\Leftrightarrow possible to over-determine the amplitude

NP B41(1972) 445
[SHKL, J Phys G38 (11) 053001]

Photon beam		Target			Recoil			Target - Recoil								
		x	y	z	x^{\prime}	y^{\prime}	z '	$\begin{aligned} & x^{\prime} \\ & x \end{aligned}$	$x^{\prime}$$y$	$\begin{gathered} x^{\prime} \\ z \end{gathered}$	$\begin{gathered} y^{\prime} \\ x \end{gathered}$	$\begin{array}{\|l\|} \hline y^{\prime} \\ y \end{array}$	$\begin{gathered} y^{\prime} \\ z \end{gathered}$	$\begin{gathered} z^{\prime} \\ x \end{gathered}$	$\begin{aligned} & z^{\prime} \\ & y \end{aligned}$	$\begin{gathered} z^{\prime} \\ \hline z \end{gathered}$
unpolarized	σ_{0}		T			\boldsymbol{P}		\boldsymbol{T}_{x},		L_{x},		Σ		\boldsymbol{T}_{z},		L_{z},
$\boldsymbol{P}_{L}^{\gamma} \sin \left(2 \phi_{\gamma}\right)$		H		G	$\boldsymbol{O}_{\boldsymbol{x}}$,		\boldsymbol{O}_{z},		C_{z},		E		F		${ }_{-} C_{x}$,	
$\boldsymbol{P}_{L}^{\gamma} \cos \left(2 \phi_{\gamma}\right)$	$-\Sigma$		$-P$			$-T$		$-\boldsymbol{L}_{z}$,		$\boldsymbol{T}_{\boldsymbol{z}}$,		$-\sigma_{0}$		L_{x},		$-T_{x}$,
circular $\boldsymbol{P}_{\boldsymbol{c}}^{\gamma}$		F		-E	C_{x},		C_{z},		$-\boldsymbol{O}_{z}$,		G		$-H$		$\boldsymbol{O}_{\boldsymbol{x}}$,	

- 16 different observables
- combine asymmetries for different final states in a coupled-channel PWA
\Leftrightarrow identify N^{*} resonances
\Leftrightarrow extract γN^{*} couplings

Challenge \#2: the dressings of sQCD

N^{*} resonance \Leftrightarrow s-channel pole

- meson-loop "dressings" of the Electromagnetic vertex affect the dynamical properties (excitation mechanism) and determine Q^{2} evolution, but not spectral properties
- coupled-channel "dressings" of the strong vertex determine the N^{*} spectral properties (mass/pole positions, widths)

Challenge \#2: the dressings of sQCD - eg. the P_{11} Roper clos*

N^{*} resonance \Leftrightarrow s-channel pole

- coupled-channel "dressings" of the strong vertex determine the N^{*} spectral properties
- dynamic coupled-channel model of $\pi N, \gamma N \rightarrow \pi N, \pi \Delta, \eta N, K Y$
[EBAC/AO, PRL 104 (2010) 042302]
\Leftrightarrow "bare" N^{*} excitation at 1763 evolves to doublet of poles at ~1360
\Leftrightarrow no PWA of a single channel can be sufficient with such couplings

Challenge \#2: the dressings of sQCD - eg. the P_{11} Roper clos

N^{*} resonance \Leftrightarrow s-channel pole

- meson-loop "dressings" of the Electromagnetic vertex affect the dynamical properties (excitation mechanism) and determine Q^{2} evolution, but not spectral properties
- Q^{2} evolution demonstrates the basic character of the second $J^{\pi}=1 / 2^{+}$ state of the nucleon as a radial excitation of a dressed $3 q$ core
[Chen, El-Bennich, Roberts, et al., arXiv:1711.03142]

©EBAF Large Acceptance Spectrometer (CLAS): 1997-2012

- tagged photon beams

circular polarization from bret of polarized e^{-}
linear polarization from e^{-}prem in diamond

- longitudinally polarized e^{-}beams

FROST - frozen-spin proton target

$\gamma p \rightarrow \pi^{+}(n)$
g9a: Strauch et al., PL B750 (2015) 53

- target: $15 \mathrm{~mm} \varnothing \times 50 \mathrm{~mm}$
- material: $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ (butanol)
- p-dilution: $10 / 74$
- $P(H)=83 \%$
- $T_{1}(1 / e$ spin relaxation $)=115 d(+h)$

$$
=65 \mathrm{~d}(-h)
$$

- repolarize ~ weekly

FROST: NIM A684 (2012) 27

HDice - frozen-spin target for neutrons

$$
\gamma n \rightarrow \pi^{-} p
$$

g14: Ho et al., PRL 118 (2017) 242002

- target: $15 \mathrm{~mm} \varnothing \times 50 \mathrm{~mm}$
- material: solid HD
- p-dilution: $1 / 2$; n-dilution: $1 / 1$
- $P(H)=60 \%$ or $P(D)=30 \%$
- T_{1} (1/e spin relaxation) \sim years

$$
\boldsymbol{\Sigma}\left(\vec{\gamma} \boldsymbol{p} \rightarrow \pi^{0} n\right)
$$

Photon beam		Target			Recoil		
		x			x^{\prime}	y^{\prime}	$z '$
			y	z			
unpolarized	σ_{0}		T			\boldsymbol{P}	
$\boldsymbol{P}_{L}^{\gamma} \sin \left(2 \phi_{\gamma}\right)$		H		G	\boldsymbol{O}_{x}		\boldsymbol{O}_{z},
$P_{L}^{\gamma} \cos \left(2 \phi_{\gamma}\right)$	- Σ		$-P$			-T	
circular $\boldsymbol{P}_{c}^{\gamma}$		F		-E	C_{x},		C_{z},

Photon beam		Target			Recoil			
		x			x^{\prime}	y^{\prime}	z^{\prime}	
		y	z					
unpolarized	σ_{0}			T			\boldsymbol{P}	
$\boldsymbol{P}_{L}^{\gamma} \sin \left(2 \phi_{\gamma}\right)$		H		G	O_{x},		$\boldsymbol{O}^{\prime}{ }^{\prime}$	
$\boldsymbol{P}_{L}^{\gamma} \boldsymbol{\operatorname { c o s }}\left(2 \phi_{\gamma}\right)$	$-\Sigma$		-P			-T		
circular $\boldsymbol{P}_{\text {c }}^{\gamma}$		F		-E	C_{x},		C_{z},	

Photon beam		Target			Recoil		
		x			x^{\prime}	y^{\prime}	z '
			y	z			
unpolarized	σ_{0}		T			\boldsymbol{P}	
$\boldsymbol{P}_{L}^{\gamma} \sin \left(2 \phi_{\gamma}\right)$		H		G	$\boldsymbol{O}_{\boldsymbol{x}}$,		\boldsymbol{O}_{z},
$P_{L}^{\gamma} \cos \left(2 \phi_{\gamma}\right)$	- Σ		$-P$			-T	
circular $\boldsymbol{P}_{\boldsymbol{c}}^{\gamma}$		F		-E	C_{x},		C_{z},

Photon beam		Target			Recoil		
					x^{\prime}	y^{\prime}	z^{\prime}
		x	y	z			
unpolarized	σ_{0}		T			P	
$\boldsymbol{P}_{L}^{\gamma} \sin \left(2 \phi_{\gamma}\right)$		H		G	O_{x},		$\mathrm{O}_{\mathbf{z}}$,
$\boldsymbol{P}_{L}^{\gamma} \cos \left(2 \phi_{\gamma}\right)$	$-\Sigma$		-P			$-T$	
circular $\boldsymbol{P}_{c}^{\boldsymbol{\gamma}}$		F		-E	C_{x},		C_{z},

$P_{\Lambda}\left(\gamma \boldsymbol{p} \rightarrow K^{+} \vec{\Lambda}\right)$

CLAS-g11 : Phys Rev C81 (2010) 025201 clos

$C_{x}, C_{z}\left(\vec{\gamma} p \rightarrow K^{+} \vec{\Lambda}\right)$
CLAS-g1c : Phys Rev C75 (2007) 035205 clos

$O_{x}, O_{z}\left(\vec{\gamma} p \rightarrow K^{+} \vec{\Lambda}\right)$
CLAS-g8 : Phys Rev 993 (2016) 065201 clos

Final states and observables measured in CLAS

| | $\boldsymbol{\sigma}$ | $\boldsymbol{\Sigma}$ | \mathbf{T} | \mathbf{P} | \mathbf{E} | \mathbf{F} | \mathbf{G} | \mathbf{H} | \mathbf{T}_{x} | $\mathbf{T}_{\mathbf{z}}$ | \mathbf{L}_{x} | $\mathbf{L}_{\mathbf{z}}$ | \mathbf{O}_{x} | $\mathbf{O}_{\mathbf{z}}$ | \mathbf{C}_{x} | $\mathbf{C}_{\mathbf{z}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Proton target: $\gamma p \rightarrow X$

$\mathrm{p} \mathrm{r}^{0}$	\checkmark															
$\mathrm{n} \mathrm{x}^{+}$	\checkmark															
pM	\checkmark															
p ${ }^{\prime}$	\checkmark															
$\mathrm{pr} \mathrm{x}^{+} \pi$	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark VNU +8 more лл兀 observables UNUN								
p ω	\checkmark	SDME														
$\mathbf{K}+\boldsymbol{\Lambda}$	\checkmark															
$\mathbf{K}^{+} \mathbf{\Sigma}^{0}$	\checkmark															
$\mathbf{K}^{0+} \mathbf{\Sigma}^{+}$	\checkmark															
$\mathbf{K}^{0} \mathbf{\Sigma}^{+}$	\checkmark															

"Neutron" target: $\gamma n \rightarrow X$

Published

Confirmation of new states near $W=1900$

- Bonn-Gatchina + Zagreb PWA:

- CLAS $\gamma p \rightarrow K^{+} \Lambda$ used to fix $L=0,1$ multipoles
- used in a coupled-channel search for poles
\Leftrightarrow reveals new N^{*} s that couple strongly to $K \Lambda$ (but weakly to πN; not evident in $\pi N \rightarrow \pi N$)

$N(1860) 1 / 2^{+}$

Confirmation of 1 -star $\mathbf{\Delta (2 2 0 0)} 7 / 2^{-}$in coupled-channel PWA clos

- well established $\Delta(1950) 7 / 2^{+}[P D G * * * *$ missing a parity-partner
\Leftrightarrow possible weak $\Delta(2200) 7 / 2^{-}\left[P D G^{*}\right]$?
- Bonn-Gatchina coupled-channel PWA of CLAS and CBELSA/TAPS data from many channels [Phys Lett B766 (2017) 357]
\Leftrightarrow requires Δ (2176) 7/2-
- small πN branch \Leftrightarrow very weak in πN scattering
- but reflected in the $\gamma N \rightarrow \pi N$ " E " asymmetries
- no evidence of mass-degenerate partners near 1950 (arguing against Chiral restoration)

Photo-production from neutrons

- the electromagnetic interactions do not conserve isospin
$\mathcal{A}_{\gamma p \rightarrow \pi^{+} \boldsymbol{n}}=\sqrt{2}\left\{\mathcal{A}_{p}^{I=1 / 2}-\frac{1}{3} \mathcal{A}^{I=3 / 2}\right\}$
\Leftrightarrow proton data determine $\boldsymbol{\mathcal { A }}^{I=3 / 2}$
$\mathcal{A}_{\gamma n \rightarrow \pi^{-} p}=\sqrt{2}\left\{\mathcal{A}_{n}^{I=1 / 2}+\frac{1}{3} \mathcal{A}^{I=3 / 2}\right\}$
\Rightarrow both proton and neutron target data needed for the $I=1 / 2$ amplitudes
- $\quad \gamma+n$ data base is very sparse
$\Leftrightarrow \gamma n N^{*}$ couplings very poorly determined
\Leftrightarrow CLAS run periods g10 $(\gamma+D)$,

$$
\begin{aligned}
& g 13(\vec{\gamma}+D), \\
& \text { g14 }(\vec{\gamma}+\vec{D})
\end{aligned}
$$

Photon beam		Target			Recoil			
		x			x^{\prime}	y^{\prime}	z^{\prime}	
		y	z					
unpolarized	σ_{0}			T			\boldsymbol{P}	
$\boldsymbol{P}_{L}^{\gamma} \sin \left(2 \phi_{\gamma}\right)$		H		G	$\boldsymbol{O}_{\boldsymbol{x}}$,		\boldsymbol{O}_{z},	
$\boldsymbol{P}_{L}^{\gamma} \cos \left(2 \phi_{\gamma}\right)$	- Σ		-P			-T		
circular $\boldsymbol{P}_{c}^{\gamma}$		F		-E	C_{x},		C_{z},	

Deuteron reactions

restricted to create an effective neutron target

- select events for which the proton in Deuterium is a passive "spectator" \Leftrightarrow key variable is its momentum, eg. equivalently, the momentum of the undetected proton in $\gamma+n(p) \rightarrow \pi^{-} p(p)$ \Leftrightarrow use the data itself to determine the kinematic region in which a measured observable is stable
- eg. the beam-target helicity asymmetry " E ":
[PRL 118 (2017) 242002]

$$
\left|\mathrm{P}_{\text {miss }}\right|<0.1 \mathrm{GeV} / \mathrm{c}
$$

- with these tight requirements, the D-state gives no contribution

- NB: stable region is observable dependent

Evidence for an N(1975)3/2+ from $E\left(\vec{\gamma} \vec{n} \rightarrow \pi^{-} p\right)$

A decade of advances in mapping the N^{*} spectrum

$N(W) J^{\pi}$	PDG＇08	PDG＇17	＋recent	$\gamma \mathrm{N}$	πN	KY
$N(1710) 1 / 2^{+}$	$\star \star \star$	$\star \star \star \star$		$\checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark \checkmark$
N（1860） $1 / 2^{+}$			$+v$	\checkmark	\checkmark	\checkmark
$N(1860) 5 / 2^{+}$		$\star \star$			$\checkmark \checkmark$	
$N(1875) 3 / 2^{-}$		大 \star 大		$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark \checkmark \checkmark$
$N(1880) 1 / 2^{+}$		大		\checkmark	\checkmark	\checkmark
$N(1895) 1 / 2^{-}$		大 \star	$+v$	$\checkmark \checkmark$	\checkmark	$\checkmark \checkmark$
$N(1900) 3 / 2^{+}$	$\star \star$	$\star \star \star$	$+v$	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark \checkmark \checkmark$
N（1975）3／2＋			$+v$	\checkmark	\checkmark	
$N(2040) 3 / 2^{+}$		\star			\checkmark	
$N(2060) 5 / 2^{-}$		大 \star		$\checkmark \checkmark$	$\checkmark \checkmark$	$\checkmark \checkmark$
N（2100） $1 / 2^{+}$	\star	\star	$+v$	\checkmark	\checkmark	
$N(2120) 3 / 2^{-}$		大		$\checkmark \checkmark$	$\checkmark \checkmark$	\checkmark
$N(2300) 1 / 2^{+}$		大 \star			\checkmark	
$N(2570) 5 / 2^{-}$		大 \star			$\checkmark \checkmark$	
$\Delta(1940) 3 / 2^{-}$	\star	$\star \star$		\checkmark	\checkmark	
$\Delta(2200) 7 / 2^{-}$	\star	\star	$+v$	\checkmark	\checkmark	

Probing the dynamics of N^{*} excitation with Q^{2} in $\left(e, e^{\prime}\right) \quad$ clos $\$$

- N^{*} excitation depend on $Q^{2}=-\left(\boldsymbol{k}_{e}-\boldsymbol{k}_{e^{\prime}}\right)^{2}$
\Leftrightarrow different responses to changes in Q^{2}
- mapped out in large CLAS data sets eg. PRC 77 (2008)015208 ~ 35,000 data pts PRC 91 (2015) 045203 ~ 37,000 data pts

Published CLAS data on

 exclusive meson electroproduction from protons| Hadronic final
 state | Covered \boldsymbol{W} range
 (GeV) | Covered \boldsymbol{Q}^{2} range
 $\left(\mathrm{GeV}^{2} / \mathrm{c}^{2}\right)$ | Measured
 observables |
| :--- | :--- | :--- | :--- |
| $\pi^{+} \mathrm{n}$ | $1.1-1.38$ | $0.16-0.36$ | Observables
 • cross section |
| | $1.1-1.55$ | $0.3-0.6$ | |
| angular distributions | | | |

Q^{2} evolution of photo \rightarrow electro-couplings probe the N^{*} excitation mechanisms

V. Burkert \& C. Roberts, arXiv:1710.02549

V. Burkert, NSTAR'2017

LF RQM: I. Aznauryan, V.B. arXiv:1603.06692
DSE: J. Segovia, C.D. Roberts et al., PRC94 (2016) 042201
\Rightarrow Non-quark contributions are significant at $\mathrm{Q}^{2}<2.0 \mathrm{GeV}^{2}$.
\rightarrow The $1^{\text {st }}$ radial excitation of the q^{3} core emerges as the probe penetrates the MB cloud
> "Nature" of the Roper - its core is the $1^{\text {st }}$ radial excitation of the nucleon.
eg. $N(1535) 1 / 2^{-}$, the parity partner of the nucleon

- consistent couplings extracted from different decay channels (again)
- non-quark contributions are significant for $Q^{2}<1 \mathrm{GeV}^{2}$
- $\quad L F R Q M$ describes data for $Q^{2}>1.5 \mathrm{GeV}^{2}$
[I. Aznauryan \& V. Burkert, arXiv:1603.06692]
$\rightarrow N(1535) 1 / 2^{+}$is consistent with the $1^{\text {st }}$ orbital excitation of the nucleon
eg. $N(1675) 5 / 2^{-}$, a cloud-dominated resonance
K. Park et al, PRC 91 (2015) 045203

- $\quad \gamma p N^{*}\left(Q^{2}=0\right) \gg R Q M$
\Leftrightarrow RQM is suppressed by selection rules, if only a single quark is excited [Moorhouse, Phys Rev Lett 16 (1966) 772] [Burkert et al, Phys Rev C67 (2003) 035204] (NOT a meson-Baryon molecule)
- BUT, non-quark (meson-baryon cloud) contributions are significant for all Q^{2}

$\gamma^{*} N \rightarrow N^{*}$ reveals a running quark-mass

- \quad CLAS $G_{M}(N \rightarrow \Delta)$ (normalized to dipole)
"frozen" momentum-independent M_{q} [Wilson et al., Phys Rev C85 (2012)025205] $\Leftrightarrow M_{q} \sim 300 \mathrm{MeV}$, dynamically generated by contact interactions btw current quarks
- dressed quark mass-function $M_{q}\left(p_{q}\right)$ [Roberts, J. Phys. Conf. 706 (2016) 022003] [Segovia et al., Few Body Phys 55 (2014) 1185]

- LQCD has confirmed Quark Model predictions for large numbers of N^{*} states
\Leftrightarrow no reduction in the effective degrees of freedom within the Nucleon
\Leftrightarrow full LQCD/QM range of states required to provide the baryon pressure at T_{c}
- polarization in photo-production reactions can over-determine the amplitude \Leftrightarrow extensive data on large numbers of polarization observables and final states have been collected and are in various stages of analysis
\Leftrightarrow coupled-channel PWA have been essential in disentangling the N^{*} spectrum \Leftrightarrow large numbers of new candidate states have been identified
- Q^{2} dependence of electro-production couplings provide insights to the role of the meson cloud and of the N^{*} excitation mechanism
\Leftrightarrow large data sets have been collected and analysis is ongoing ...
\Leftrightarrow meson cloud effects are generally very strong below $\sim 1-2 \mathrm{GeV}^{2}$
\Leftrightarrow transitions to N^{*} s confirm a running quark mass-function

