

Nucleons under the electron microscope: Deeply Virtual Compton Scattering at JLab in the 6 GeV and 11 GeV eras.

Daria Sokhan

University of Glasgow, Scotland

Many Manifestations of Non-Perturbative QCD Camburi, Sao Paulo, Brazil— 3rd May 2018

A full knowledge of the nucleon...

... is hard to come by

G. Renee Guzlas, artist.

The story of the blind men and

Wigner function: • full phase space parton distribution of the nucleon

х

 δz_{\perp}

 $f(x,b_1)$

 \boldsymbol{b}_{\perp}

relate, in the infinite momentum frame, transverse position of partons (*b*_⊥) to longitudinal momentum (*x*).

 $\int d^2 k_T$

Deep exclusive reactions, e.g.: Deeply Virtual Compton Scattering, Deeply Virtual Meson production, ...

Wigner function: full phase space parton distribution of the nucleon

Generalised Parton Distributions (GPDs)

Fourier Transform of electric Form Factor: transverse charge density of a nucleon

proton

neutron

C. Carlson, M. Vanderhaeghen PRL 100, 032004 (2008)

GPDs and DVCS

***Deeply Virtual Compton Scattering:** golden channel for the extraction of GPDs.

longitudinal momentum fractions of the struck parton

ξ ≃

* At high exchanged Q^2 and low t access to four chiral-even GPDs:

$$E^q, \tilde{E}^q, H^q, \tilde{H}^q(x,\xi,t)$$

* Can be related to PDFs:

$$H(x,0,0) = q(x) \quad \tilde{H}(x,0,0) = \Delta q(x)$$

and form factors:

$$\int_{-1}^{+1} H dx = F_1 \qquad \int_{-1}^{+1} \tilde{H} dx = G_A$$
$$\int_{-1}^{+1} E dx = F_2 \qquad \int_{-1}^{+1} \tilde{E} dx = G_P$$

*Small changes in nucleon transverse momentum allows mapping of transverse structure at large distances.

GPDs and nucleon spin

$$J_{N} = \frac{1}{2} = \frac{1}{2}\Sigma_{q} + L_{q} + J_{g}$$

* Ji's relation: $J^q = \frac{1}{2} - J^g = \frac{1}{2} \int_{-1}^{1} x dx \left\{ H^q(x,\xi,0) + E^q(x,\xi,0) \right\}$

*H*accessible in DVCS off the proton, first experimental constraint on *E*, through neutron-DVCS: M. Mazouz et al, PRL 99 (2007) 242501

* GPDs can provide insight into the orbital angular momentum contribution to nucleon spin: **the spin puzzle**.

Measuring DVCS

* Process measured in experiment:

Compton Form Factors in DVCS

Experimentally accessible in DVCS cross-sections and spin asymmetries, eg:

$$A_{LU} = \frac{d\vec{\sigma} - d\vec{\sigma}}{d\vec{\sigma} + d\vec{\sigma}} = \frac{\Delta \sigma_{LU}}{d\vec{\sigma} + d\vec{\sigma}}$$

At leading twist, leading order:

Which DVCS experiment? γ* Real parts of CFFs accessible in cross-sections and leptonic plane e double polarisation asymmetries, hadronic imaginary parts of CFFs in plane single-spin asymmetries. Beam, target Neutron Proton polarisation $Im\{\boldsymbol{H}_{\mathbf{p}}, H_{\mathbf{p}}, E_{\mathbf{p}}\}$ $\Delta \sigma_{LU} \sim \frac{\sin \phi}{\sqrt{3}} \Im (F_1 H + \xi G_M \tilde{H} - \frac{t}{\sqrt{M^2}} F_2 E) d\phi$ $Im\{H_n, H_n, E_n\}$ $\Delta \sigma_{UL} \sim \frac{\sin \phi}{t} \Im(F_1 \tilde{H} + \xi G_M (H + \frac{x_B}{2} E)) -\xi \frac{t}{4M^2} F_2 \tilde{E} + \dots) d\phi$ $Im\{H_{p}, H_{p}\}$ $Im\{H_n, E_n, E_n\}$ $Im\{H_{p}, E_{p}\}$ $Im\{H_{n}\}$ $\Delta \sigma_{UT} \sim \cos \phi \,\Im(\frac{t}{{}^{4}M^{2}}(F_{2}H - F_{1}E) + \ldots)d\phi$ $\Delta \sigma_{LL} \sim (A + B \cos \phi) \Re (F_1 \tilde{H} + \xi G_M (H + \frac{x_B}{2} E) + ...) d\phi$ $Re\{H_{\mathbf{p}}, \overline{H}_{\mathbf{p}}\}$ $Re\{\boldsymbol{H}_{n}, E_{n}, E_{n}\}$

()

Jefferson Lab

CEBAF: Continuous Electron Beam Accelerator Facility.

- * Energy up to 11 GeV (Halls A, B, C), 12 GeV Hall D
- ***** Energy spread $\delta E/E_e \sim 10^{-4}$
- Electron polarisation up to ~80%, measured to 3%
- Beam size at target < 0.4 mm</p>

Jefferson Lab: 6 GeV era

CEBAF: Continuous Electron Beam Accelerator Facility.

- **★** Energy up to ∼6 GeV
- * Energy resolution $\delta E/E_e \sim 10^{-5}$

***** Longitudinal electron polarisation up to ~85%

Hall A:

* High resolution($\delta p/p = 10^{-4}$) spectrometers, very high luminosity.

Hall B: CLAS

 Very large acceptance, detector array for multiparticle final states.

Hall C:

* Two movable spectrometer arms, well-defined acceptance, high luminosity

JLab @ 12 GeV

High resolution($\delta p/p = 10^{-4}$) spectrometers, very high luminosity, large installation experiments.

9 GeV tagged polarised photons, full acceptance

Hall B: CLAS12

Hall C

Two movable high momentum spectrometers, welldefined acceptance, very high luminosity.

Very large acceptance, high luminosity.

CLAS12 Design luminosity

 $L \sim 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

High luminosity & large acceptance: Concurrent measurement of exclusive, semi-inclusive, and inclusive processes

Acceptance for photons and electrons: • $2.5^{\circ} < \theta < 125^{\circ}$

Acceptance for all charged particles: • $5^{\circ} < \theta < 125^{\circ}$

Acceptance for neutrons: • $5^{\circ} < \theta < 120^{\circ}$

DVCS in Hall A @ 11 GeV

Detect photon in PbF₂ calorimeter: < 3% energy resolution

Reconstruct recoiling proton through missing mass.

DVCS in Hall C @ 11 GeV

Detect electron with (Super) High Momentum Spectrometer, (S)HMS.

Detect photon in PbWO₄ calorimeter.

Sweeping magnet to reduce backgrounds in calorimeter.

Reconstruct recoiling proton through missing mass.

DVCS highlights from the 6 GeV era

First DVCS cross-sections in valence region

* Hall A, ran in 2004, high precision, narrow kinematic range. Q²: 1.5 - 2.3 GeV², $x_B = 0.36$.

 CFFs show scaling in DVCS: leading twist (twist-2) dominance at this moderate Q².

- * Strong deviation of DVCS cross-section from BH: extraction of $|T_{DVCS}|^2$ amplitude as well as interference terms.
- * Separation of real part of the twist-2 interference term and the $|T_{DVCS}|^2$ amplitude is very sensitive to relative crosssections at $\phi = 0^\circ$ and $\phi = 180^\circ$.

M. Defurne et al, PRC 92 (2015) 055202.

First DVCS cross-sections in valence region

$$x_B = 0.36, Q^2 = 1.9 \ GeV^2, -t = 0.32 \ GeV^2$$

 * High precision of the data: sensitivity to subtle differences in model predictions.

VGG model: Vanderhaeghen, Guichon, Guidal KMS model: Kroll, Moutarde, Sabatié KM model: Kumericki, Mueller

TMC: kinematic twist-4 target-mass and finite-t corrections, calculated for proton DVCS and estimated for KMS12.

- * KMS parameters tuned on very low x_B mesonproduction data: not adapted to valence quarks.
 - \rightarrow

TMC*: TMC extracted from the KMS12 model and applied to KM10a.

*TMC improve agreement for KM10a model, especially at $\phi = 180^{\circ}$. Higher-twist effects?

The devil is in the detail...

M. Defurne et al, PRC 92 (2015) 055202.

Here comes the twist...

* Twist: powers of $\frac{1}{\sqrt{Q^2}}$ in the DVCS amplitude. Leading-twist (LT) is twist-2.

- ***** Order: introduces powers of α_s
- LO requires Q² >> M² (M: target mass)
 Bold assumption for JLab 6 GeV kinematics!
- CFFs can be classified according to real and virtual photon helicity:
- \mathcal{F}_{++-} helicity of virtual incoming photon
 - \odot Helicity-conserved CFFs \mathcal{F}_{++}
 - Helicity-flip (transverse) \mathcal{F}_{-+}
 - \odot Longitudinal to transverse flip \mathcal{F}_{0+}

- ***** CFFs contributing to the scattering amplitude:
 - \odot LT in LO: only \mathcal{F}_{++}
 - LT in NLO: both \mathcal{F}_{++} and \mathcal{F}_{-+} • Twist-3: \mathcal{F}_{0+}

Here comes the twist...

- * At finite Q^2 and non-zero *t* there's ambiguity in defining the light-cone axis:
 - Traditional GPD phenomenology uses the Belitsky convention, in plane of q and P:
 A. Belitsky *et al*, *Nucl. Phys. B878* (2014), 214
 - New, Braun definition using q and q': more natural.
 V. Braun *et al*, *Phys. Rev. D89* (2014), 074022

Reformulating CFFs in this frame absorbs most kinematic power corrections (TMC):

$$\mathcal{F}_{++} = \mathbb{F}_{++} + \frac{\chi}{2} \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] - \chi_0 \mathbb{F}_{0+}$$
$$\mathcal{F}_{-+} = \mathbb{F}_{-+} + \frac{\chi}{2} \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] - \chi_0 \mathbb{F}_{0+}$$
$$\mathcal{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$
$$\mathbf{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$
$$\mathbf{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$
$$\mathbf{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$
$$\mathbf{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$
$$\mathbf{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$
$$\mathbf{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$
$$\mathbf{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$

Assuming LO and LT in the Braun frame leaves higher-twist, higher-order contributions in the Belitsky frame, scaled by kinematic factors χ and χ_0 .

Non-negligible at the Q^2 and x_B of the Hall A cross-section measurement!

M. Defurne et al, Nature Communications 8 (2017) 1408.

Hints of higher twist or higher orders

E07-007: Hall A experiment to measure helicity-dependent and -independent crosssections at two beam energies and constant x_B and t.

 Simultaneous fit to cross-sections at both energies and three values of Q² using only leading twist and leading order (LT/LO) do not describe the cross-sections fully: higher twist/order effects?

Using Braun's decomposition, \mathbb{H}_{-+} and \mathbb{H}_{0+} can't be neglected.

M. Defurne et al, Nature Communications 8 (2017) 1408.

Hints of higher twist or higher orders

* Including either higher order or higher twist effects (HT) improves the match with data:

Higher-order and / or higher-twist terms are important! A glimpse of gluons.

Wider range of beam energy needed to identify the dominant effect — JLab at 11 GeV.

M. Defurne et al, Nature Communications 8 (2017) 1408.

Rosenbluth separation of DVCS² and BH-DVCS terms

* Generalised Rosenbluth separation of the DVCS² and the BH-DVCS interference terms in the cross-section is possible but NLO and/or higher-twist required.

- Significant differences
 between pure DVCS and
 interference contributions.
- Helicity-dependent crosssection has a sizeable DVCS² contribution in the higher-twist scenario.
- Separation of HT and NLO effects requires scans across wider ranges of Q² and beam energy: JLab12!

M. Defurne et al, Nature Communications 8 (2017) 1408.

Tomography of the proton

* CFFs extracted in a VGG fit.

* Imaginary part of CFF: $F_{Im}(\xi, t) = F(\xi, \xi, t) \mp F(-\xi, \xi, t)$

Beam-spin Asymmetry (A_{LU})

AS

Follows first CLAS measurement: S. Stepanyan *et al* (CLAS), *PRL* 87 (2001) 182002

 A_{LU} from fit to asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

A_{LU} characterised by imaginary parts of CFFs via: $F_1 H + \xi G_M \tilde{H} - \frac{t}{4M^2} E$

Qualitative agreement with models, constraints on fit parameters.

F.-X. Girod *et al* (CLAS), *PRL* **100** (2008) 162002.

A_{UL} from fit to asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

A_{UL} characterised by imaginary parts of CFFs via: $x_B \rightarrow \xi t \sim \xi t$

$$F_1 \tilde{\boldsymbol{H}} + \xi G_M (\boldsymbol{H} + \frac{x_B}{2} \boldsymbol{E}) - \frac{\zeta \iota}{4M^2} F_2 \tilde{\boldsymbol{E}} + \dots$$

High statistics, large kinematic coverage, strong constraints on fits, simultaneous fit with BSA and DSA from the same dataset.

E. Seder *et al* (CLAS), *PRL* 114 (2015) 032001S. Pisano *et al* (CLAS), *PRD* 91 (2015) 052014

Beam- and target-spin asymmetries

Double-spin Asymmetry (A_{LL})

A_{LL} from fit to asymmetry: $\frac{\kappa_{LL} + \lambda_{LL} \cos \phi}{1 + \beta \cos \phi}$

A_{LL} characterised by real parts of CFFs via:

 $F_1 \tilde{\boldsymbol{H}} + \xi G_M (\boldsymbol{H} + \frac{x_B}{2} \boldsymbol{E}) + \dots$

- * Fit parameters extracted from a simultaneous fit to BSA, TSA and DSA.
- Constant term dominates and is almost entirely BH.

E. Seder *et al* (CLAS), *PRL* 114 (2015) 032001
S. Pisano *et al* (CLAS), *PRD* 91 (2015) 052014

CFF extraction from three spin asymmetries at common kinematics.

What can we learn from the asymmetries?

Answers hinge on a global analysis of all available data.

*Information on relative distributions of quark momenta (PDFs) and quark helicity, $\Delta q(x)$.

 $H(x,0,0)=q(x) \quad \tilde{H}(x,0,0)=\Delta q(x)$

Indications that axial charge is more concentrated than electromagnetic charge.

$$\int_{-1}^{+1} H dx = F_1$$
$$\int_{-1}^{+1} \tilde{H} dx = G_A$$

E. Seder *et al* (CLAS), *PRL* **114** (2015) 032001 S. Pisano *et al* (CLAS), *PRD* **91** (2015) 052014

Proton DVCS @ 11 GeV

Experiment E12-06-119 *F. Sabatié et al.*

$$\begin{split} P_{beam} &= 85\% \\ L &= 10^{35} \ cm^{-2}s^{-1} \\ 1 &< Q^2 &< 10 \ GeV^2 \\ 0.1 &< x_B^2 &< 0.65 \\ -t_{min}^2 &- t &< 2.5 \ GeV^2 \end{split}$$

Kinematics similar for all proton DVCS @ 11 GeV with CLAS12 experiments

Unpolarised liquid H₂ target:

- Statistical error: 1% 10% on $\sin \varphi$ moments
- Systematic uncertainties: ~ 6 8%

A_{LU} characterised by imaginary parts of CFFs via: $F_1H + \xi G_M \tilde{H} - \frac{t}{4M^2}E$

First experiment with CLAS12

Started this February!

CLAS12

Proton DVCS @ 11 GeV

Impact of CLAS12 unpolarised target proton-DVCS data on the extraction of Re(H) and Im(H).

Re(H)

(CLAS 6 GeV extraction H. Moutarde)

CLAS12: first experiment (Run Group A)

Target: 5cm long liquid H₂, L = 10^{35} cm⁻² s⁻¹, Beam energy: 10.6 GeV, Electron polarisation: ~85% +/- 4% Triggers: inclusive electron,

> forward electron + charged particle (for quasi-real events), muon pair (for J/Psi decay).

Operational specifications achieved.

It's started!

42

Aim for first CLAS12 publication by end year...

DVCS at lower energies with CLAS12

11 GeV

Experiment E12-16-010B *F.-X. Girod et al.*

Unpolarised liquid H₂ target:

- Beam energies: 6.6, 8.8 GeV
- Simultaneous fit to beam-spin and total cross-sections.
- * Rosenbluth separation of interference and $|T_{DVCS}|^2$ terms in the cross-section
- * Scaling tests of the extracted CFFs
- Model-dependent determination of the D-term in the Dispersion Relation between *Re* and *Im* parts of CFFs.

Deep Process Kinematics with 6.6, 8.8, and 11 GeV

Compare with measurements from Halls A and C: cross-check model and systematic uncertainties.

DVCS at lower energies with CLAS12

Projected extraction of CFFs (red) compared to generated values (green). Three curves on the Re(H) show three different scenarios for the D-term.

F.-X. Girod et al.

Neutron DVCS @ 11 GeV

Experiment E12-11-003 S. Niccolai, D. Sokhan et al.

1.2

0

CLAS12

 $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 H + \xi (F_1 + F_2) H - k F_2 E\} d\phi$

0.7

Xp

Simulated statistical sample: Q² (GeV²) © 7 6 5 ₊₊₊++++++<mark>|</mark>↓+++ 4 _{┝╅┿┿┿┿┿┿}┿┿<mark>╠</mark>╁╫╫╫╫╫╫ 2 0.5 0.6 0.3 0.2 0.4

Im (E_n) dominates.

 $L = 10^{35} \text{ cm}^{-2} \text{s}^{-1}/\text{nucleon}$

 $e + d \rightarrow e' + \gamma + n + (p_s)$

CLAS12 +Forward Tagger + **Neutron Detector**

Tentative schedule: 2019

Beam-spin asymmetry in neutron DVCS @ 11 GeV

 $J_u = 0.3, J_d = -0.1$ $J_u = 0.3, J_d = 0.1$ $J_u = 0.1, J_d = 0.1$ $J_u = 0.3, J_d = 0.3$

* At 11 GeV, beam spin asymmetry (A_{LU}) in neutron DVCS *is* very sensitive to J_u, J_d

***** Wide coverage needed!

Fixed kinematics: $x_B = 0.17$ $Q^2 = 2 \text{ GeV}^2$ $t = -0.4 \text{ GeV}^2$

Proton DVCS with a longitudinally polarised target

Experiment E12-06-119 *F. Sabatié et al.* A_{UL} characterised by imaginary parts of CFFs via: $F_1\tilde{H} + \xi G_M(H + \frac{x_B}{2}E) - \frac{\xi t}{4M^2}F_2\tilde{E} + \dots$

Longitudinally polarised NH_3 target:

- Dynamic Nuclear Polarisation (DNP) of target material, cooled to 1K in a *He* evaporation cryostat.
- P_{proton} > 80%
- Statistical error: 2% 15% on $\sin \varphi$ moments
- Systematic uncertainties: ~ 12%

Neutron DVCS with a longitudinally polarised target

Experiment E12-06-109A. S. Niccolai, D. Sokhan et al.

Longitudinally polarised ND₃ target:

- Dynamic Nuclear Polarisation (DNP) of target material in a cryostat shared with the NH₃ target.
- P_{deuteron} up to 50%
- Systematic uncertainties: ~ 12%

A_{UL} characterised by imaginary parts of CFFs via:

$$F_1\tilde{\boldsymbol{H}} + \xi G_M(\boldsymbol{H} + \frac{x_B}{2}\boldsymbol{E}) - \frac{\xi t}{4M^2}F_2\tilde{\boldsymbol{E}} + \dots$$

 \longrightarrow Im(H_n)

In combination with pDVCS, will allow flavourseparation of the H_q CFFs.

Tentative schedule: 2020

Proton DVCS with transversely CLAS12 polarised target at CLAS12

C12-12-010: with transversely polarised HD target (conditionally approved). L. Elouardhiri et al.

 $\Delta \sigma_{\text{UT}} \sim \cos \phi \operatorname{Im} \{k(F_2 H - F_1 E) + \dots \} d\phi$

Sensitivity to *Im(E)* for the proton.

J_ J_

0.6 **公0.6 0.6**

1.4

1.2

Projected sensitivities to Im(H) CFF

CLAS 12

Projections for *Im(H)* neutron and proton and up and down CFFs extracted from approved CLAS12 experiments.

VGG fit (M. Guidal)

Projected sensitivities to Im(E) CFF

Projections for *Im(E)* neutron and proton and up and down CFFs extracted from approved and conditionallyapproved CLAS12 experiments.

VGG fit (M. Guidal)

DVCS Cross-sections: Halls A and C

Experiments: **E12-06-114** (Hall A, 100 days), **E12-13-010** (Hall C, 53 days)

C. Muñoz Camacho et al., C. Hyde et al.

Unpolarised liquid H₂ target:

- Beam energies: 6.6, 8.8, 11 GeV
- Scans of Q^2 at fixed x_B .
- Hall A: aim for absolute crosssections with 4% relative precision.

* Azimuthal, energy and helicity dependencies of crosssection to separate $|T_{DVCS}|^2$ and interference contributions in a wide kinematic coverage.

* Separate *Re* and *Im* parts of the DVCS amplitude.

DVCS on 4He: CLAS12 with ALERT

Experiment E12-17-012:Measurement of BSA in coherent DVCS from aZ.-E. Meziani et al.4He target: partonic structure of nuclei.

* Spin 0 target, so at leading twist only one chiral-even GPD: **H**_A.

CLAS12 + ALERT: central recoil detector

Incoherent, spectator-tagged DVCS on ${}^{4}He$ and d.

To conclude...

* Success of the initial DVCS programme at **Jefferson Lab with 6 GeV beams**, which produced measurements of the cross-section, beam- target- and double-spin asymmetries in proton DVCS and a first measurement on neutron DVCS:

- Indications that factorisation holds at the low Q² kinematics of JLab,
- · constraints on a number of CFFs,
- tentative conclusions on relative quark distributions,
- importance of higher order / higher twist in high-precision measurements.
- *Upgrade of **JLab to 12 GeV** max beam energy (11 GeV to halls A, B and C) opens a new region of phase space at higher kinematics in the valence region: high luminosity, high precision.
- * DVCS measurements are a flagship part of the the new experimental programme: first experiments in Hall A and with CLAS12.
- * Approved proposals aimed at greatly constraining CFF fits in a global analysis.
- *Extraction of *H* and *E* from proton and neutron DVCS, flavour separation of CFFs, separation of pure DVCS amplitude from the interference term, measurements at higher precision and statistics, sensitivity to higher-twist contributions.

Thank you!

ANT AND THE PROPERTY AND A DESCRIPTION OF A