8th International Conference on Quarks and Nuclear Physics November 13-17, 2018, Tsukuba, Japan

Spin observables, **∑** and **G** in charged pion photo-production from polarized neutrons in solid HD at Jefferson Lab

Tsuneo Kageya Thomas Jefferson National Accelerator Facility on behalf of the g14 analysis team and the CLAS collaboration

1. Motivations

- Missing resonance issue
- Why neutron data are important?

$$A_{\gamma p \to \pi^{+}n} = \sqrt{2} \left[A_{p}^{(l=1/2)} - \frac{1}{3} A^{(l=3/2)} \right]$$

$$A_{\gamma n \to \pi - p} = \sqrt{2} \left[A_{n}^{(l=1/2)} + \frac{1}{3} A^{(l=3/2)} \right]$$

A (I = 3/2) can be determined from p or n data alone.

 $A^{(l=1/2)}$ needs both of p and n data !

Neutron data are sparse !

2. Experimental conditions & apparatus

g14 experiments: Dec. 2011 – May. 2012

- * Linearly polarized photon beams: $1.1 < E_v < 5.3 \text{ GeV}$
 - : 19 days \rightarrow 2.9 B events (Dpol. ~ + 25 %) : 9 days \rightarrow 1.3 B events (Dpol. ~ - 16 %)

Used for this analysis

Extract Σ and G asymmetries from $\gamma + n(p) \rightarrow \pi^- + p(p)$ intending to use D as a neutron target

Thomas Jefferson National Accelerator Facility

jeffersonlab.jpg 1,500×1,000 pixels

10/16/18, 5:11 PM

https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2015/jeffersonlab.jpg

*"Jefferson Lab 12 GeV program" by Robert McKeon (Sat. 10 AM)

• Linearly and Circularly polarized photon beams

· CLAS detectors (CEBAF Large Acceptance Spectrometer)

 Longitudinally Polarized Deuteron target (Solid HD) used as a neutron target

E asymmetry from $\gamma \mathbf{n} \rightarrow \pi^- \mathbf{p}$ reaction with circularly polarized photon beams from this experiment have been published at **P.R.L, 118, 242002 (2017)**

Coherent bremsstrahlung photon beam line

CLAS detectors

CLAS

CLAS (CEBAF Large Acceptance Spectrometer)

CLAS side view (reconstruct and identify π^{-1} & proton)

Longitudinally polarized HDice target and background

3. Analysis CUTS: Timing cuts for π^- and proton

(From Haiyun Lu)

QNP2018, Nov. 14, 2018, Tsukuba, Japan

Event Selection for γ n (p) $\rightarrow \pi - p$ (p) (No.1)

Event selection for γ n (p) $\rightarrow \pi - p$ (p) (No.2)

CUTS (results of the selection (previous pages))

Missing mass before selection and cut away

 ϕ difference between *p* and π -

class

QNP2018, Nov. 14, 2018, Tsukuba, Japan

CUTS: Missing momentum cut

Σ with different missing momentum
 straight line: the average
 curve, second-order polynomial: fit result
 used to study systematics

(From Haiyun Lu)

CUTS: Reconstructed vertex cut and dilution factor

4. Results

Four configurations of beam and target polarizations

Four Experimental Beam-Target Configurations

Extract Σ asymmetry

$$N_{||}^{+}(\varphi) = a(\varphi) F_{||}^{+} \{ I - P_{||}^{+} \Sigma \cos[2(\varphi - \varphi_{0})] + P_{+z} P_{||}^{+} G \sin[2(\varphi - \varphi_{0})] \}$$
(1) PARA, + Target

$$N_{\perp}^{+}(\varphi) = a(\varphi) F_{\perp}^{+} \{ I + P_{\perp}^{+} \Sigma \cos[2(\varphi - \varphi_{0})] - P_{+z} P_{\perp}^{+} G \sin[2(\varphi - \varphi_{0})] \}$$
(2) PERP, + Target

$$N_{||}^{-}(\varphi) = a(\varphi) F_{||}^{-} \{ I - P_{||}^{-} \Sigma \cos[2(\varphi - \varphi_{0})] - P_{-z} P_{||}^{-} G \sin[2(\varphi - \varphi_{0})] \}$$
(3) PARA, - Target

$$N_{\perp}^{-}(\varphi) = a(\varphi) F_{\perp}^{-} \{ I + P_{\perp}^{-} \Sigma \cos[2(\varphi - \varphi_{0})] + P_{-z} P_{\perp}^{-} G \sin[2(\varphi - \varphi_{0})] \}$$
(4) PERP, - Target

F: flux, $a(\phi)$: acceptance, P_{\perp}^{+} : Linear Pol., P_{+z} : target D pol. $\frac{(1) / F_{||}^{+} + (3) / F_{||}^{-} - (2) / F_{\perp}^{+} - (4) / F_{\perp}^{-}}{(1) / F_{||}^{+} + (3) / F_{||}^{-} + (2) / F_{\perp}^{+} + (4) / F_{\perp}^{-}} = \frac{-4 \times a(\phi) \times P_{beam} \times \Sigma \times \cos[2(\phi - \phi_{0})]}{4 \times a(\phi)}$ Fit with a parameter of Σ ($\phi_{0} = 0$): $f = -P_{beam} \cdot \Sigma \cdot \cos(2\phi)$

Results: Σ asymmetries vs cos θ_{π} (No.1)

Shaded areas: SAID model* predictions from fits to all published data together with E (g14) and Σ (g13) asymmetries g14: this experiment, g13 used liquid D_2 target (previous talk) * SAID [TS21] (From Haiyun L QNP2018, Nov. 14, 2018, Tsukuba, Japan

18

Σ asymmetries vs cos $\theta_{\pi-}$ (No.2)

Shaded areas: SAID model^{*} predictions from fits to all published data together with E (g14) and Σ (g13) asymmetries

* SAID [TS21]

Extract G asymmetry

$$N_{||}^{+}(\varphi) = a(\varphi) F_{||}^{+} \{ I - P_{||}^{+} \Sigma \cos[2(\varphi - \varphi_{0})] + P_{+z} P_{||}^{+} G \sin[2(\varphi - \varphi_{0})] \}$$
(I) PARA, + Target

$$N_{\perp}^{+}(\varphi) = a(\varphi) F_{\perp}^{+} \{ I + P_{\perp}^{+} \Sigma \cos[2(\varphi - \varphi_{0})] - P_{+z} P_{\perp}^{+} G \sin[2(\varphi - \varphi_{0})] \}$$
(2) PERP, + Target

$$N_{||}^{-}(\varphi) = a(\varphi) F_{||}^{-} \{ I - P_{||}^{-} \Sigma \cos[2(\varphi - \varphi_{0})] - P_{-z} P_{||}^{-} G \sin[2(\varphi - \varphi_{0})] \}$$
(3) PARA, - Target

$$N_{\perp}^{-}(\varphi) = a(\varphi) F_{\perp}^{-} \{ I + P_{\perp}^{-} \Sigma \cos[2(\varphi - \varphi_{0})] + P_{-z} P_{\perp}^{-} G \sin[2(\varphi - \varphi_{0})] \}$$
(4) PERP, - Target

F: flux, $a(\phi)$: acceptance, P_{\perp}^+ : Linear Pol., P_{+z} : target D pol.

 $\frac{(1) / F_{||}^{+} - (3) / F_{||}^{-} - (2) / F_{\perp}^{+} + (4) / F_{\perp}^{-}}{(1) / F_{||}^{+} + (3) / F_{||}^{-} + (2) / F_{\perp}^{+} + (4) / F_{\perp}^{-}} = \frac{2x a(\phi) x (P_{+z} + P_{-z}) x P_{beam} G sin[2(\phi - \phi_{0})]}{4 x a(\phi)}$ Fit with parameter of G ($\phi_{0} = 0$): f = 0.5 • ($P_{+z} + P_{-z}$) • P_{beam} • G sin (2 ϕ)

G asymmetries vs cos $\theta_{\pi-}$ (No.1)

Shaded areas: SAID model* predictions from fits to all published data together with E (g14) and Σ (g13) asymmetries

* SAID [TS21]

G asymmetries vs cos $\theta_{\pi-}$ (No.2)

Shaded areas: SAID model* predictions from fits to all published data together with E (g14) and Σ (g13) asymmetries

* SAID [TS21]

QNP2018, Nov. 14, 2018, Tsukuba, Japan

(From Haiyun Lu)

Analysis with final W instead of initial W bins

$$W_{init} = \sqrt{m_n^2 + 2 \cdot m_n \cdot E_{\gamma}}$$

 W_{fin} : invariant mass of π – and proton

Systematic error estimations

<u>Corrections or cuts for linearly polarized beams</u>

Extraction of linear polarization

Calculate beam pol. with coherent bremsstrahlung theory

ANalytic Bremsstrahlung (ANB) calculation from the Tübingen Group adapting Hall B beam parameters

Fit to the enhancement dist. from Hall B data

These two agree well within photon energy range (250 MeV) shown by the arrows (down to ~200 MeV from the Coherent Edge)

Performed experiments with linearly polarized photon beams and linearly polarized deuteron targets and obtained preliminary results for Σ and G asymmetries

PWA analysis based on the most recent SAID does not describe the G asymmetries extracted from $\gamma n \rightarrow \pi^- p$ reaction for the first time.

These results give more information to the new PWA analysis.

Further detailed analyses are on going for these asymmetries.

