

Outline

- Introduction
 - Light mesons decaying to $K\overline{K}$ and $K\overline{K}\pi$: open vs hidden strangeness
 - Exotic strangeonia and expected channels
- Studies of photoproduction reactions by real photons: CLAS6
 - The $K\overline{K}$ system: K^+K^- and K_SK_S
 - The $K\overline{K}\pi$ and $K\pi\pi$ systems
 - The ϕ η system
- Studies of photoproduction reactions by virtual photons: CLAS12
- Summary and Conclusions

Introduction: strange quarkonia

clas

- Light mesons (u,d,s) with at least one strange quark/antiquark in their valence component
 - Kaonia/antikaonia: dominant valence ns/sn (n= u, d)
 - Of 22 expected states below 2.1 GeV, ~13 have been observed
 - Strangeonia: s\overline{S}
 - Of 22 expected states below 2.1 GeV, <10 are steadily established

- Strangeonium
 experimental signatures
 much less known (and
 clear) than charmonium
- Large probability of:
 - strong mixing with light mesons & other expected (but still unobserved) structures
 - Overlap of broad states
 - Decay channels shared

The meson spectrum + gluons: exotics class

- The meson spectrum bears also the information about gluons, which bind quarks
- Which is the expected signature of gluonic degrees of freedom?
 - Observation of extra states possibly with quantum numbers not allowed by CQM
- New states with gluonic content:
 - Glueballs (ggg)
 - Hybrids (qqg)
 - Multiquark/molecular states
 - **EXOTICS**

LQCD expectations for the meson spectrum

Remarkable agreement of most recent LQCD calculation with the expected meson spectrum BUT: the lightest exotic of the spectrum now expected at 1600 MeV (1⁻⁺) and 2 GeV (0⁺⁻)

Strangeonia decay patterns

- Smoking gun decay modes for $S\overline{S}$ states: $\eta \phi$, $\eta' \phi$, $\phi \phi$
 - $-\eta \phi$: identification of C = -1 S\overline{S} candidates
 - Small branching fraction to non-strange final states

- Other relevant channel for $s\bar{s}$ and exotics ($q\bar{q}g$, $q\bar{q}q\bar{q}$): $\phi\pi^0$
- Decays to open-strangeness final states do not uniquely identify strangeonia: $K\overline{K}$, $K\overline{K}^*$ ($K\overline{K}\pi$), $K^*\overline{K}^*$ (+c.c.)
 - Decay channels shared by:
 - Light quark iso-singlet mesons
 - Exotic states
 - Experimental evidences of significant $n\bar{n} \leftrightarrow gluons \leftrightarrow s\bar{s}$ mixing, especially in the scalar 0^{++} , pseudoscalar 0^{-+} and 2^{-+} sectors

Meson spectroscopy with e.m. probes

- The electromagnetic interaction is weaker than the strong one and can be calculated perturbatively with high precision (based on well-known QED)
 - Scattering: one-photon exchange approximation

 Meson photoproduction: high probability of spin-1 meson production from photons

π (K)N:
Need spin-flip
for exotic
quantum
number

γN: No spin-flip for exotic quantum number

- Expected production rate for exotics and conventional mesons: comparable
- ss coupling to the photon relatively large (beam spin vector)

CLAS @ 6 GeV

The K⁺K⁻ system: $\gamma p \rightarrow pK^+K^-$

S. Lombardo, UCornell, 2016

Physics case: investigation of light meson resonance spectrum

- φ(1020) main decay mode
- possible sub-threshold decay of $f_0(980)$ and $a_0(980)$ scalars
- issues: σ production? Other scalars? $f_0(980)$ coupling to $\pi\pi/K\overline{K}$?
- CLAS6 g11 data set:
 - $E_{\gamma} = (3-3.8) \text{ GeV}$
 - -t: (0.6-1.3) GeV²
 - p and K⁺ detected in CLAS, K⁻
 reconstructed by missing mass
 - π/K misidentification: 10-15%
- Low mass region selected
 - $m_{pK-} > 1.6 \text{ GeV}$
 - Baryonic resonance contributions ($\Lambda(1520)$) removed, no overlap

The K⁺K⁻ system: $\gamma p \rightarrow pK^+K^-$

- Study of S-P wave interplay in the KK system
 - Cross-sections extraction in each partial wave through likelihood fits
- Method: moments analysis

$$\langle Y_{LM} \rangle = 4\pi \int d\Omega_K \frac{d\sigma}{dt dM_{KK} d\Omega_K} Y_{LM}(\Omega_K)$$

- Moments can be expressed as bilinear combination of partial waves, depending on L, M and photon and proton helicities
- Amplitude parameterizations:
 - S wave: ρ , ω exchange in t-channel
 - P-wave: Pomeron exchange

The K_SK_S system: $\gamma p \rightarrow pK_SK_S$

S. Chandavar, UOhio, 2017 arXiv: 1712.02184

Physics case: search for a scalar glueball in its kaonic decay

- K_SK_S system: $J^{PC} = (even)^{++}$
- light scalar sector: several candidates, too many states for the nonet
 - f₀(600), f₀(980), f₀(1370), **f₀(1500)**, f₀(1700), ...
- no study yet in photoproduction reactions
- CLAS6 g12 data set:
 - $E_{\gamma} = (2.7-3) \&\& (3.1-5.1) \text{ GeV}$
 - -4π detected in CLAS, p reconstructed by missing mass
 - High correlation between K_s pairs
- Selection in t ranges
 - Low t: resonance production in t-channel
 - Wider t range for s-channel production

The K_SK_S system: $\gamma p \rightarrow pK_SK_S$

- Clean signal of f₀(1500) for |t| < 1 GeV², no indication for |t|>1 GeV²
 - t-channel process
 - Good glueball candidate??
- Low acceptance at fw/bw angle: no PW analysis possible
- Angular analysis of Gottfried-Jackson distributions, comparison with simulations
 - S-wave dominance, small D-wave contribution above 1550 MeV

The $K\overline{K}\pi$ system: $\gamma p \rightarrow pK^0K^{\pm}\pi^{\mp}$

CLAS Collaboration, PRC93, 065202 (2016)

Physics case: superimposition of several axial/scalar states in the 1.3-1.5 GeV mass range with decay in $K\overline{K}\pi$

- $J^P = (odd)^+ \text{ or } J^P = (even)^-$
- η -like pseudoscalars 0^{-+} : all of them decay to $K\overline{K}\pi$, K^*K , $a_0(980)\pi$
- axial states 1**:
 - f₁(1285): not seen in K*K
 - f₁(1420): favored candidate as hybrid qqg, or 4q state, or K*K molecule
 - other: f₁(1510), isovector a₁(1420)...

CLAS6 g11a data set:

- $E_{\gamma} = (3-3.8) \text{ GeV}$
- p, K^{\pm} , π^{\mp} detected in CLAS, K^0 from missing mass
- Kaon identification by TOF
- Study of the $p\pi^+\pi^-\eta$ and $p\pi^+\pi^-\gamma$ channels on the same sample

The $K\overline{K}\pi$ system: $\gamma p \rightarrow pK^0K^{\pm}\pi^{\mp}$

CLAS Collaboration, PRC93, 065202 (2016)

- No evidence found for higher mass $\eta(1405)$, $\eta(1470)$, $f_1(1420)$, $f_1(1510)$
- First observation in photoproduction at ~1280 MeV, studied in $\pi^+\pi^-\eta$
 - M = (1281.0 \pm 0.8) MeV
 - $-\Gamma = (18.4 \pm 1.4) \text{ MeV}$
 - More compatible with $f_1(1285)$ than $\eta(1295)$
 - Differential cross sections: flatter trend as compared to η'(958)

The $K\overline{K}\pi$ system: $\gamma p \rightarrow pK^0K^{\pm}\pi^{\mp}$

CLAS Collaboration, PRC93, 065202 (2016)

- Poor match of the differential cross sections with expectations from t-channel models
 - s-channel substantial contribution?
 - Dynamically produced state via s-channel involving N* excitations or KK* molecular interactions?
 - Larger support for f₁(1285) identification
- First determination of the relative branching ratio: $\Gamma(K\overline{K}\pi)/\Gamma(\eta\pi\pi) = 0.216\pm0.032$
 - Consistent with PDG value : 0.171 ± 0.013
 - Not known for $\eta(1295)$

The K $\pi\pi$ system: $\gamma p \rightarrow \Lambda K^{\dagger}\pi^{\dagger}\pi^{\dagger}$

M. Al Ghoul, FSU, 2016

Physics case: search for excited strange mesons

- Low mass region (1-1.5 GeV) extensively studied in past diffractive experiments: $K_1(1270)$, $K_1(1400)$, $K^*(1410)$
- Little is known in the (1.5-2) GeV mass range: K(1630), K₁(1650)
- None of these states ever observed in photoproduction (peripheral production: low momentum transfer events)

- CLAS6 g12 data set:
 - $E_{\gamma} = (4.40-5.45) \text{ GeV}$
 - Selection of pK $^+\pi^-\pi^-\pi^-$ exclusive final state
 - $-\Lambda \rightarrow \pi^{-}p$ selection by invariant mass
 - Background from $\Sigma^{\text{-}}(1385) \rightarrow \Lambda \pi^{\text{-}}$ decay removed
 - Background from π/K misidentification removed

Partial wave analysis 16K evts

- 1⁺S:
 - \rightarrow Kp: observation of K₁(1270) and K₁(1650)
 - $\rightarrow K^*\pi$: observation of $K_1(1400)$
- 1⁻P:
 - \rightarrow Kp: observation of K*(1650)?
 - $\rightarrow K^*\pi$: observation of $K^*(1410)$

The $\eta \phi$ decay channel: $\gamma p \rightarrow pK^+K^-\eta$

Physics case: search for a 1⁻⁺ strangeonium hybrid

M. Saini, FSU, 2012

- g12 dataset analysis:
 - $\gamma p \rightarrow pK^+K^-\eta_{miss}$
 - real photons up to 5.45 GeV/c
- Largest sample collected for final state (909 events)

Photoproduction experiments at JLAB today class

- High intensity real and virtual photon beams
- Able to measure exclusively the production reactions and the decays of the emitted particles
- Requirements:
 - Good acceptance, momentum resolution, particle id capabilities

- Good hermeticity
- Uniform acceptance
- Limited resolution
- Limited pID

- Good resolution
- Good pID
- Resonable hermeticity
- NON-Uniform acceptance

Low Q² quasi-real photoproduction

$E_{scattered}$	0.5 - 4.5 GeV
θ	2.5^{o} - 4.5^{o}
ϕ	0° - 360°
ν	6.5 - 10.5 GeV
Q^2	$0.01 - 0.3 \text{ GeV}^2 \ (< Q^2 > 0.1 \text{ GeV}^2)$
W	3.6 - 4.5 GeV

- Electron scattering at "0" deg (2.5°-4.5°)
 - Low Q^2 virtual photon ⇒ quasi real
- Photon tagging: detection of electron at small angles
 - High energy photons: 6.5 10.5 GeV
 - To be accomplished by a "Forward Tagger"
- Quasi real photons: linearly polarized
 - Polarization: 70%-10%, measured event by event
- High luminosity: $N_{\gamma} \sim 5 \times 10^8$, L $\sim 10^{35}$ cm⁻²s⁻¹ on 5 cm LH₂ target
 - Thin targets can be used

Search for strange hybrids with CLAS12: $\gamma p \rightarrow p \phi \pi^0$

- Production cross section: 10 nb
- CLAS12 acceptance: ~10%
- Good π/K separation power required for momenta up to 2.6 GeV/c
- Simulation: good background rejection capabilities using kin. fit and pid of CLAS12
- Expected events in 80 data taking days @ full luminosity: ~ 3000 evts/mass bin
- Expected trigger rate: < 10 kHz

Search for strange hybrids with CLAS12: $\gamma p \rightarrow p \phi \eta$

- Acceptance evaluation of $\gamma p \rightarrow p \phi(1850) \rightarrow p \eta \phi \rightarrow p K^+(K^-)_{miss} \gamma \gamma$ events with CLAS12 (lab emission angle distribution)
 - Good acceptance for neutrals, sizeably increased by FT calorimeter:
 overall acceptance > 10%
- Expected cross secton for strangeonia production: O(10 nb)
 - About half of BR(K⁺K⁻)

Summary and Conclusions

- Light meson spectrum with open and hidden strangeness still to be fully understood
 - Many observations in different reactions
 - Many confirmations, many disagreements
 - Too many states observed to be arranged in available CQM slots
 - Too few ordinary states (radial excitations) observed where expected
- Photoproduction reactions can be studied now with intense beams at new generation experiments. Expected to be an efficient source of:
 - ss pairs, due to the spin vector nature of the photon beam
 - Open and hidden strangeness (strangeonia) mesons
 - spin-1 hybrid states
- Photoproduction: ideal place to study benchmark decay channels
 - Promising outlook for smoking –gun decay channels: $\eta \phi$, $\eta' \phi$, $\phi \phi$, $\phi \pi$
 - BR($\eta \phi$)/BR(K+K-) = 0.5
 - Limited outcome from other spectroscopy experiments in the last decade