

Catching a Glimpse of the 3D Partonic Structure of Nucleons and Nuclei

S. Kuhn & M. Hattawy

- Physics Motivations
- Recent Results.
- Future Measurements.

2019 Fall Meeting of the APS Division of Nuclear Physics, October 14-17, 2019

Generalized Parton Distributions

- Contain information on:

- \rightarrow Correlation between quarks and anti-quarks
- → Correlation between longitudinal momentum and transverse spatial position of partons
- Can be accessed via hard exclusive processes such as deeply virtual Compton scattering (DVCS):

* At leading order in $1/Q^2$ (twist-2) and in the coupling constant of QCD (α_s).

• **Experimentally,** the measured photonelectroproduction cross section ($ep \rightarrow ep\gamma$) is:

$$d\sigma \propto |\tau_{\rm BH}|^{2} + \underbrace{(\tau_{\rm DVCS}^{*}\tau_{\rm BH} + \tau_{\rm BH}^{*}\tau_{\rm DVCS})}_{\mathcal{I}} + |\tau_{\rm DVCS}|$$

$$= \underbrace{\mathsf{DVCS}}_{\mathsf{H}} + \underbrace{\mathsf{H}}_{\mathsf{H}} + \underbrace{\mathsf{H}} + \underbrace{\mathsf{H}}_{\mathsf{H}} + \underbrace{\mathsf{H}} +$$

• The **DVCS** signal is enhanced by the interference with BH.

2

DVCS off Nuclei

Two DVCS channels are accessible with nuclear targets:

\diamond Coherent DVCS: $e^-A \rightarrow e^-A \gamma$

- \rightarrow Study the partonic structure of the nucleus.
- → One chiral-even GPD ($H_A(x,\xi,t)$) is needed to parametrize the structure of the spinless nuclei (⁴He, ¹²C, ¹⁶O, ...).

\diamond Incoherent DVCS: $e^-A \rightarrow e^-N \gamma X$

- \rightarrow The nucleus breaks and the DVCS takes place on a nucleon.
- \rightarrow Study the partonic structure of the bound nucleons
 - (4 chiral-even GPDs are needed to parametrize their structure).

Proton Tomography via DVCS

- Local fit of all the JLab data – Jlab Hall A (σ , $\Delta \sigma$) – CLAS (σ , $\Delta \sigma$, ITSA, DSA)
- Enough coverage to explore the t and $x_B (\rightarrow \xi)$ dependence of H_{Im} .

- The nucleon size is shrinking with x.

[R. Dupré et al. Phys.Rev. D95 (2017) no.1, 011501]

<u>(</u>)

ODU

CLAS6 Coherent ⁴He DVCS

1. We select **COHERENT** events which have:

\diamond Events with :

- Only one good electron in CLAS
- At least one high-energy photon ($E\gamma > 2 \text{ GeV}$)
- Only one ⁴He in RTPC ($p \sim 250-400$ MeV).
- $\langle Q^2 > 1 \text{ GeV}^2$.

<u>(</u>())

ODU

♦ Exclusivity cuts.

2. Beam-spin asymmetry:

$$A_{LU} = \frac{d^{4}\sigma^{+} - d^{4}\sigma^{-}}{d^{4}\sigma^{+} + d^{4}\sigma^{-}} = \frac{1}{P_{B}} \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

$$= \frac{\alpha_{0}(\phi) \Im m(\mathcal{H}_{A})}{\alpha_{1}(\phi) + \alpha_{2}(\phi) \Re e(\mathcal{H}_{A}) + \alpha_{3}(\phi) \left(\Re e(\mathcal{H}_{A})^{2} + \Im m(\mathcal{H}_{A})^{2}\right)}$$
(2017)

→A_{LU} in agreement with the available models.
 →The first ever experimental extraction of the real and the imaginary parts of the ⁴He CFF. Compatible with the calculations.

CLAS6 Incoherent p-DVCS off ⁴He

1. We select events which have:

 \diamond Events with :

(İ)

ODU

- Only one good electron in CLAS
- At least one high-energy photon ($E\gamma > 2 \text{ GeV}$)
- Only one proton in CLAS.
- $\Diamond~Q^2 > 1~GeV^2$ and W> 2 GeV/c²
- ♦ Exclusivity cuts (3 sigmas).

2. π^0 background subtraction (contaminations ~ 8 - 11%)

3. Beam-spin asymmetry:

$$A_{LU} = \frac{d^4\sigma^+ - d^4\sigma^-}{d^4\sigma^+ + d^4\sigma^-} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

 $A_{LU} \propto \alpha(\phi) \{ F_1 H + \xi (F_1 + F_2) \widetilde{H} + \kappa F_2 E \}$

- 2D bins due to limited statistics
- Fits in the form: $\frac{\alpha * \sin(\phi)}{(1 + \beta * \cos(\phi))}$

[M. Hattawy et al., Phys. Rev. Lett. 123, 032502, 2019]

CLAS12-ALERT Program

CLAS12 experimental apparatus:

- High luminosity & large acceptance.
- Measurements of deeply virtual exclusive, semi-inclusive, and inclusive processes.

• We proposed to measure with CLAS12:

- Partonic Structure of Light Nuclei.
- Tagged EMC Measurements on Light Nuclei.
- Spectator-Tagged DVCS Off Light Nuclei.
- Other Physics Opportunities.
- The momentum threshold of the CLAS12 inner tracker is too high to be used for our measurements.
- Approved experimental setup:
 - CLAS12 forward detectors.
 - A Low Eenergy Recoil Tracker (ALERT) in place of CLAS12 Central detector (SVT & MVT).
- CLAS12-ALERT setup will allow higher statistics and wider kinematical coverage.

30/20 days on ⁴He/D 5 days on H₂ with L = (3-6) \cdot 10³⁴ cm⁻² sec⁻¹

CLAS12-ALERT Proposals

ODU

nDVCS with BONuS12

$e^{-} D \rightarrow e p \gamma (n)$

11 GeV

- CLAS12 Forward Detector:

- \rightarrow Superconducting Torus magnet.
- \rightarrow 6 independent sectors:
 - \rightarrow HTCC: identifying π^{-} (p >5.0 GeV/c).
 - \rightarrow 3 regions of DCs: tracking charged particles.
 - \rightarrow LTCC: π^{-} identification (p >3.0 GeV/c).
 - \rightarrow FTOF Counters: identifying hadrons.
 - \rightarrow PCAL and Ecs: detecting γ , e⁻ and n [5°,40°].

- Central Detector:

- **Target:** D gas @ 7.5 atm, 293 K
- BONuS12 RTPC: Detects low energy spectator protons.
- Solenoid: Shields the detectors from Møller electrons.
 Enables tracking in the RTPC.
- CTOF, CND, and FMT

35 days on D 5 days on H₂ with L = $2 \cdot 10^{34}$ cm⁻² sec⁻¹

Tagged-proton nDVCS

 \diamond 9M expected events.

- ♦ Total of 108 bins in x* vs. t vs. phi
- ◊ 20% conservative sys. Uncertainities.
- **\diamond Exploring the neutron's CFF via the BSA.**
- **\diamond** Compare the nDVCS to Free proton DVCS.

Fully exclusive nDVCS

Conclusions & Perspectives

♦ The first exclusive measurement of DVCS off ⁴He:

- \rightarrow The coherent DVCS shows a stronger asymmetry than the free proton as was expected from theory.
- \rightarrow We performed the first ever model independent extraction of the ⁴He CFF.
- → The bound proton has shown a different trend compared to the free one indicating the medium modifications of the GPDs and opening up new opportunities to study the EMC effect.
- ♦ **CLAS12-ALERT** will provide wider kinematical coverage and better statistics that will:
 - \rightarrow Allow performing ⁴He tomography in terms of quarks and gluons.
 - \rightarrow Allow comparing the gluon radius to the charge radius.
 - \rightarrow Use tagging methods to study EMC effect via DIS measurements.
 - \rightarrow Use Tagged-DVCS techniques to study in-medium nucleon interpretations.
 - \rightarrow Reinforce EIC physics program by proving their usefulness in the valence region.
- ◊ **CLAS12-RGF** we intend to measure the neutron DVCS beam-spin asymmetry by:
 - \rightarrow Tagging the spectator slow-recoiling proton
 - \rightarrow Measuring the fully exclusive neutron DVCS channel.

Thank you!