

Review of light baryon spectroscopy

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

August 21, 2019

Evolution of the Universe

Time after the Big Bang

- T ~ 10⁻⁸ s: QGP
- T ~ 10⁻⁶ s: N*, B*
- \rightarrow confinement emerges
- \rightarrow light quarks acquire mass
- \rightarrow chiral symmetry is broken
- T ~ 10⁻⁴ s: Nucleons
- \rightarrow Only protons and neutrons remain
- T ~ : 10² s: Nuclei
- T ~ 300,000 yrs: Atoms

How do light quarks aquire mass?

=> Measure observables that are sensitive to the quark mass.

QCD and **Confinement** – Open Questions

What is the origin of confinement?

How are confinement and chiral symmetry breaking connected?

How does QCD give rise to hadrons?

Interaction between quarks unknown throughout > 98 % of a hadron's volume

Baryons in PDG insufficient to explain transition => missing states!

Explaining the excitation spectrum of hadrons is the key to our understanding of QCD in the low-energy regime (Hadron Models, Lattice QCD, ...)

→ Complementary to Deep Inelastic Scattering (DIS) where information on collective degrees of freedom is lost

With a few GeV electron machine, explore events to unravel mechanisms of confinement

Build your Mesons and Baryons ...

N and Δ Excited Baryon States ...

Orbital excitations
 (two distinct kinds in contrast to mesons)

Radial excitations (also two kinds in contrast to mesons)

© Simon Capstick

Experimental questions related to hadrons

Baryons

What are the fundamental degrees of freedom inside a proton or a neutron? How do they change with varying quark masses?

Mesons

What is the role of glue in a quark-antiquark system and how is this related to the confinement of QCD?

What are the properties of predicted states beyond simple quark-antiquark systems (hybrids, glueballs, multi-quark states, ...)?

Goals of the N* program

- 1. Spectroscopy (mainly driven by real photon scattering)
 - → Search for previously unobserved or so-called missing resonances
 - → Measure the N* spectrum more precisely
 - ➔ Provides information on the nature of the effective degrees of freedom in strong QCD

2. Structure of excited baryons (mainly driven by electron scattering)

- → Electron beams are ideal to measure resonance form factors and their Q² dependence
- ➔ Provides information on the confining (effective) forces of the 3-quark system.
- → Studying underlying symmetries of hadron system
- → Understanding the effective degrees of freedom

Experiments to explore excited baryons

Thomas Jefferson National Accelerator Facility (Jefferson Lab)

- CEBAF Upgrade completed in September 2017
 - \rightarrow electron beam
 - $\rightarrow E_{max}$ = 12 GeV
 - \rightarrow I_{max} = 90 µA
 - $\rightarrow \text{Pol}_{\text{max}} \sim 90\%$

Stefan Diehl, JLU + UConn

Physics Operation

- 4 halls running simultaneously since January 2018
- Highest intensity tagged photon beam at 9 GeV
- World-record polarized electron beams
- Nuclear experiments at ultra-high luminosities, up to 10³⁹ electrons-nucleons /cm²/s

CLAS / CLAS12 in Hall B at Jefferson Lab

- $\blacktriangleright \mathcal{L} = 1 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- Inclusive electron trigger (all calibration reactions will be analyzed in parallel)
- Electrons in the forward detector
- Protons in the central detector and forward detector
- Photons in the forward detector and forward tagger

Establishing the N* spectrum: The N(1900) 3/2+ state

- First baryon resonance observed and fully established with multiple confirmations in electromagnetic meson production.
- State confirmed in an effective Langrangian resonance model analysis of $\gamma p \rightarrow K^+ \Lambda$.

O. V. Maxwell, PRC85, 034611, 2012

 State confirmed in a covariant isobar model single channel analysis of γp → K⁺Λ.
 T. Mart, M. J. Kholili , PRC86, 022201, 2012

A more detailed analysis is required!

Establishing the N* and Δ* Spectrum

Establishing the N* spectrum

Hyperon photoproduction $\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

Example of CB-ELSA and MAMI-CB Data

Differential $p\pi^0$ cross section at MAMI-CB fitted with L = 4 Legendre expansion.

Target Asymmetry in π^0 production off protons.

Polarization observables in $K\Lambda/K\Sigma$ production

Including additional polarization observables has let to the discovery of new states?

		bean asymm	n pol n etry	recoil arisation	pol. tra from a pol. pl beam recoil	ansfer a circ. hoton to a ing Λ	target asymmetry	beam dou polar	recoil uble isation
Experiment	Final State	W range (GeV)	Σ	Р	C_x	C_z	T	O_x	O_z
CLAS g11	$K\Lambda \over K\Sigma^0$	$1.62 – 2.84 \\ 1.69 – 2.84$		* *					
CLAS g1c	$K\Lambda \ K\Sigma^0$	$1.68 – 2.74 \\ 1.79 – 2.74$		*	* *	*			
LEPS	$K\Lambda \ K\Sigma^0$	$\frac{1.94 - 2.30}{1.94 - 2.30}$	*						
GRAAL	$K\Lambda \over K\Sigma^0$	$1.64 extrm{-}1.92$ $1.74 extrm{-}1.92$	*	*			*	*	*
CLAS g8	$K\Lambda \ K\Sigma^0$	$1.71 – 2.19 \\1.75 – 2.19$	* *	*			* *	* *	*

transverse

Target T and beam-target E spin asymmetries

More N*'s from polarized K⁺Λ production?

Search for the $\Delta(2200)7/2$ - resonance

Analysis verifies the strong 4* Δ (1950) 7/2+ state and finds evidence for Δ (2200) 7/2-

M = 2176 (40) MeV $\Gamma = 210 (70) \text{ MeV}$ $BR(N\pi) = 3.5(1.5)\%$

New evidence for excited nucleons

State N((mass)J ^p	PDG pre 2012	PDG 2018 evidence	Mass (Pole)
N (1710)1/2 +	***	****	1700
N (1880)1/2 +		***	1860
N(2100)1/2+	*	***	2100
N(1895)1/2 ⁻		****	1910
N (1900)3/2 +	**	****	1920
N(1875)3/2		***	1900
N(2120)3/2 ⁻		***	2100
N(2060)5/2 ⁻		***	2070
Δ(2200)7/2 ⁻	*	***	2150

****	- existence is certain
***	- existence is likely
**	- evidence of existence is fair
*	- evidence of existence is poor

The most recent photoproduction data led to the discovery of new states and fully established poorly known states up to 2200 MeV.

http://pdg.lbl.gov/2019/reviews/rpp2018-rev-n-delta-resonances.pdf

The N/Δ spectrum in PDG 2018

 \bigcirc The parity partners $\Delta(1950)7/2^+$ and $\Delta(2200)7/2^-$ show no mass degeneracy.

Do the new states agree with the LQCD predictions?

R. Edwards et al., Phys. Rev. D84 (2011) 074508

Ignoring the absolute mass scale, new states correlate with the J^P values predicted from LQCD. We need LQCD projections at or near the physical pion mass

Search for missing excited states

How many exited baryon states exist in nature?

→ We get closer

currently established excited baryon states.

Search for excited baryons in 2-body channels ✓ - data acquired ✓ - analyzed/published

Observable Σ Т Ρ Е F н Τ, Tz 0, 0, C, C_z σ G $L_{\rm x}$ L, . pπ⁰ V nπ⁺ γp→X pŋ pŋ' V K⁺A K+Σ0 ~ ρω/φ SDME K⁺*Λ SDME K^{0*}Σ+ SDME • $\gamma n \rightarrow X$ pn⁻ pp. K'Σ+ K⁰A K⁰Σ⁰ K^{0*}Σ⁰

Structure of Excited Baryons with Electromagnetic Probes

- Meson photoproduction very effective in searching for and identifying new resonances.
- To probe the internal structure and relevant degrees of freedom versus distance scale, a hard scale is needed, which is provided in electron scattering.
 - → Study the structure of the nucleon spectrum in the domain where dressed quarks are the major active degree of freedom.
 - Explore the formation of excited nucleon states in interactions of dressed quarks and their emergence from QCD.
 - ➔ Reveal the nature of the N* states

Integrated cross section at W < 2GeV

K. Park et al., PR C77 (2008) 015208; PR C91 (2015) 045203

Why study more than one resonance, aren't they all the same?

\rightarrow States with different quantum numbers respond differently to increase in Q²

light front RQM: I. Aznauryan, V.Burkert arXiv:1603.06692 DSE: J. Segovia, C.D. Roberts et al., PRC94 (2016) 042201

- G_M shows dominance of q^3 contribution at $Q^2 > 3 \text{ GeV}^2$
- R_{EM} = -2% consistent with MB, no trend towards asymptotic behavior ($R_{EM} \rightarrow$ +100%)
- R_{SM} ~ consistent with q³ dominance, DSE has different trend at high Q²

Solving the Roper N(1440)1/2+ Puzzle

The 1st radial excitation of the 3-quark core seen when the probe penetrates the MB cloud.

"Nature" of the Roper – is consistent with the 1st radial excitation of its quark core surrounded by a meson-baryon "cloud"

N(1535)1/2- – Parity partner of the nucleon

light front RQM (LF RQM): I. Aznauryan, V. Burkert, arXiv:1603.06692

light cone sum rule (LC SR): I. Anikin, V. Braun, N. Offen, PRD92 (2015) 014018

- LF RQM describes data at $Q^2 > 1.0 \text{ GeV}^2$
- LC SR with direct link to sQCD describe transition at Q² > 1.5 GeV²

 Non-quark contributions concentrated at Q² < 1.0 GeV²

N(1535)1/2- quark core excitation is consistent with the 1st orbital excitation of the nucleon

Electrocoupling Amplitudes for $\gamma p \rightarrow N(1520) \; D_{13}$ Transition

- $A_{1/2}$ amplitude dominant at $Q^2 > 1 \text{ GeV}^2$
- $A_{3/2}$ is only significant contributor at $Q^2 < 3 \text{ GeV}^2$
- •There is clear evidence for a helicity switch from $\lambda = 3/2$ (at photon point) to $\lambda = 1/2$ at high Q^2 :
 - ➔ Rapid change in helicity structure when going from photo- to electroproduction of a nucleon resonance
 - → Stringent prediction of the chiral QM!

N⁺(1675)5/2- photo/electrocoupling amplitudes

proton target: q³ transverse amplitudes are suppressed due to a selection rule

→ Expect MB contributions to dominate at all Q²

→ Meson-baryon contributions significant

→ State is not a MB resonance

Nº(1675)5/2- photo/electrocoupling amplitudes

neutron target: q³ transverse amplitudes are not suppressed
 → Expect q³ contributions to dominate at all Q²

- → LF RQM predicts large amplitudes on neutrons
- → Effect has been observed at the photon point
- → Meson-baryon contributions significant, not dominant (~25%)

Evidence for the Onset of Precocious Scaling?

Outlook

• The search for new N* states continues with the precision data from CBELSA, MAMI, JLAB, LEPS, J-PARC, ..

CLAS12 N* program has just started ...

- Extend the Q² to a higher range
- Study the hyper-baryon spectrum
- Map out the transition of strong QCD to pertubative QCD
- Probe the running quark mass

Summary

- First high precision photo- and electroproduction data have become available and led to a new wave of significant developments in N* program.
- Large amounts of high precision data and multi-channel PWA have been essential in the discovery of new N* resonances.
- So far there is only qualitative agreement of the measured spectrum with LQCD predictions.
- Electroexcitation of nucleon resonances are sensitive to the effective degrees of freedom versus distance scale.
- The N* experimental program at higher energies gives access to domains where the transition from dressed to elementary quarks should occur.

backup

Evidence for the Onset of Precocious Scaling?

Stefan Diehl, JLU + UConn

HADRON 2019, Guilin, China