

The 52nd Reimei Workshop "Hadronic Resonances and Dense Nuclear Matter"

January 9 - 11, 2019

Extraction of beam spin asymmetry moments from deeply virtual meson production with CLAS and CLAS12 at JLAB

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Stefan Diehl

University of Connecticut Justus Liebig University Giessen

Jefferson Loaboratory Newport News Virginia, USA

until 2014:

6 GeV polarized electron beam 3 experimental halls

since 2017:

10.6 GeV polarized electron beam 4 experimental halls

Hall B until 2014: CLAS detector

2

Hall B since 2017: CLAS 12

(constructed 2014 – 2017)

Forward Detector:

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter/ RICH detector
- Forward Time-of-Flight
- E.M. calorimeter

Central Detector:

- SOLENOID magnet
- Micromegas Tracker
- Barrel Silicon Tracker
- Central Time-of-Flight
- Neutron detector

Extended Setup:

- Forward Tagger
- ~100,000 readout channels

Extraction of $A_{LU}^{sin(\phi)}$ from the hard exclusive π^+ channel

CLAS at 5.5 GeV (e1f run period)

- longitudinally polarized electron beam
- unpolarized hydrogen target

Physics motivation

Hard exclusive π^+ electroproduction

 $ep \rightarrow en\pi^+$

Cross section:

 $\frac{d^{4}\sigma}{dQ^{2}dx_{R}d\phi dt} \sim \sigma_{T} + \varepsilon_{L}\sigma_{L} + \varepsilon \cdot \sigma_{TT} \cdot \cos(2\phi) + \sqrt{2 \cdot \varepsilon_{L} \cdot (1 + \varepsilon)} \cdot \sigma_{LT} \cdot \cos(\phi) + h \cdot \sqrt{2 \cdot \varepsilon_{L} \cdot (1 - \varepsilon)} \cdot \sigma_{LT'} \cdot \sin(\phi)$

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos2\phi} \cos2\phi + \lambda_e A_{LU}^{\sin\phi} \sin\phi)$$
$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi} \sin\phi}{1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos(2\phi)} \cos(2\phi)}$$

Particle identification

Electron ID

→ Based on the electromagnetic calorimeter and the cherenkov counters

π+ ID

- \rightarrow Positive charge
- \rightarrow Fiducial cuts on the hit position in the drift chambers
- \rightarrow Particle selection based on β vs p correlation

Kinematic coverage and cuts

DIS cut: W > 2 GeV $Q^2 > 1 \text{ GeV}^2$

9

Selection of exclusive events

e π* X

- 3 σ cut on the missing neutron peak
- ≤ 10% background

Separation of forward and backward region

Beam spin asymmetry

$$BSA_i = \frac{1}{P_e} \cdot \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-} \qquad P_e = 75 \% : \text{average } e^- \text{ beam}$$
polarisation

Integrated over all kinematic variables in the forward region:

Results

Results

52nd Reimei workshop, J-PARC, Japan

SIDIS Pion Beam Spin Asymmetries with CLAS12 at 10.6 GeV

15

Physics Motivation

- The 3D nucleon structure can be described by GPDs and TDAs
- A way to acess these properties is the semi inclusive deep inelastic scattering

Physics Motivation

In a simplified way, it can be expressed as:

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos2\phi} \cos2\phi + \lambda_e A_{LU}^{\sin\phi} \sin\phi)$$

where the moments $A_{UU}^{\cos\phi}$, $A_{UU}^{\cos 2\phi}$, $A_{LU}^{\sin\phi}$ are directly related to the structure functions of the cross section

Focus of this study: $A_{LU}^{\sin\phi}$

- \rightarrow Only moment which depends on the beam helicity
- → Helicity dependence arises from the asymmetric part of the leptonic tensor and its coupling to the hadronic tensor
- \rightarrow Directly correlated with the structure function $\,F_{LU}^{\sin\phi}$
- ➔ Provides information about the quark gluon correlations in the proton

Physics Motivation and Extraction

• BSA is a good tool to extract $A_{LU}^{\sin\phi}$

$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi}\sin\phi}{1 + A_{UU}^{\cos\phi}\cos\phi + A_{UU}^{\cos(2\phi)}\cos(2\phi)}$$

→ Helicity independent acceptance terms cancel out in the ratio!

Past: Measurements have been performed with CLAS, HERMES and COMPASS

Advantages of CLAS12:

- ➔ Significantly higher statistics
- \rightarrow Extended kinematic coverage (Q², p_T)

Particle ID

- **Electron ID** \rightarrow Based on the electromagnetic calorimeter and the cherenkov counters
- **Hadron ID** \rightarrow Charge corresponding to the selected hadron
 - \rightarrow Fiducial cuts on the hit position in the drift chambers
 - $\rightarrow\,$ Particle selection based on β vs $\,$ p correlation

\rightarrow Maximum likelihood particle ID

$$P(\beta) = \frac{1}{\sqrt{2\pi\sigma}} \cdot \exp\left(-\frac{1}{2}\left(\frac{\beta-\mu}{\sigma}\right)^2\right)$$

- → Assign particle to species with the highest probability
- → Check if particle is within a certain confidence level
- Provides a cleaner particle ID for inclusive measurements

Event selection and kinematic cuts

Kinematic coverage for π^+ (similar for π^- and π^0)

Stefan Diehl, UConn

52nd Reimei workshop, J-PARC, Japan

21

Integrated beam spin asymmetry

➔ No systematics considered so far

52nd Reimei workshop, J-PARC, Japan

01/09/2019

Summary and Conclusion

- Based on CLAS data, the $A_{LU}^{\sin(\Phi)}$ moment from the hard exclusive π^+ channel above the resonance region has been measured for the first time with nearly full coverage from forward to backward angles
- The results show a clear sign change from forward angle to backward angle, which may indicate a transition from the GPD to the TDA regime.
- CLAS12 enables the extraction of SIDIS pion BSA moments with high accuracy in an extended kinematic range
- Qualitative agreement with previous experiments
- The presented analysis is based on only close to 2 % of the approved RG-A beamtime

