

Prospects for extraction of GPDs from global fits of current and future data

January 22 - 25, 2019

Beam spin asymmetry from hard exclsuive pion electro-production in the deeply virtual region with CLAS and CLAS12 at JLAB

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Stefan Diehl

University of Connecticut Justus Liebig University Giessen

Jefferson Loaboratory Newport News Virginia, USA

until 2014:

6 GeV polarized electron beam 3 experimental halls

since 2017:

10.6 GeV polarized electron beam 4 experimental halls

Hall B until 2014: CLAS detector

Hall B since 2017: CLAS 12

(constructed 2014 – 2017)

Forward Detector:

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter/ RICH detector
- Forward Time-of-Flight
- E.M. calorimeter

Central Detector:

- SOLENOID magnet
- Micromegas Tracker
- Barrel Silicon Tracker
- Central Time-of-Flight
- Neutron detector

Extended Setup:

- Forward Tagger
- ~100,000 readout channels

Extraction of $A_{LU}^{sin(\phi)}$ from the hard exclusive π^+ channel

- CLAS at 5.5 GeV (e1f run period)
- Iongitudinally polarized electron beam
- unpolarized hydrogen target

Physics motivation

Hard exclusive π^+ electroproduction

 $ep \rightarrow en\pi^+$

Cross section:

 $\frac{d^{4}\sigma}{dQ^{2}dx_{P}d\phi dt} \sim \sigma_{T} + \varepsilon_{L}\sigma_{L} + \varepsilon \cdot \sigma_{TT} \cdot \cos(2\phi) + \sqrt{2 \cdot \varepsilon_{L} \cdot (1 + \varepsilon)} \cdot \sigma_{LT} \cdot \cos(\phi) + h \cdot \sqrt{2 \cdot \varepsilon_{L} \cdot (1 - \varepsilon)} \cdot \sigma_{LT'} \cdot \sin(\phi)$

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos2\phi} \cos2\phi + \lambda_e A_{LU}^{\sin\phi} \sin\phi)$$
$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi} \sin\phi}{1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos(2\phi)} \cos(2\phi)}$$

Particle identification

Electron ID

→ Based on the electromagnetic calorimeter and the cherenkov counters

π^+ ID

- \rightarrow Positive charge
- \rightarrow Fiducial cuts on the hit position in the drift chambers
- \rightarrow Particle selection based on β vs p correlation

Kinematic coverage and cuts

DIS cut: W > 2 GeV $Q^2 > 1 \text{ GeV}^2$

Selection of exclusive events

e π* X

- 3 σ cut on the missing neutron peak
- ≤ 10% background

Separation of forward and backward region

Beam spin asymmetry

$$BSA_i = \frac{1}{P_e} \cdot \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-} \qquad \begin{array}{c} \mathsf{P}_e = \mathsf{75} \ \% : \text{average } e^- \text{ beam} \\ \text{polarisation} \end{array}$$

Integrated over all kinematic variables in forward / backward region:

Results

Results

GPD workshop, Warsaw, Poland

Application of the analysis to the hard exclusive π^{-} and π^{0} channel

- CLAS at 5.5 GeV (e1f run period)
- longitudinally polarized electron beam
- unpolarized hydrogen target

Event selection

01/23/2019

Results for π⁰

Contamination by DVCS photons ?!

Fully exclsuive channel has to be checked!

Results for π^-

- → Negative offset (due to significant background?)
- \rightarrow Turning point at ~ 90°

Comparison of A_{LU} for the three pions

A_{LU} of π⁺ is positive in forward directions and negative in backward directions

→ sign changes at 90°

A_{LU} of π^- shows an opposite bahviour if the offset is considered → turning point at 90°

 A_{LU} of π^0 is small in the central region, but increases in very forward directions

 \rightarrow sign changes ~ 90°

First studies of exclusive pion production with CLAS12 at 10.6 GeV

Particle ID

- **Electron ID** \rightarrow Based on the electromagnetic calorimeter and the cherenkov counters
- **Photon ID** \rightarrow Based on an electromagnetic calorimeter based β cut
- **Hadron ID** \rightarrow Charge corresponding to the selected hadron
 - \rightarrow Fiducial cuts on the hit position in the drift chambers
 - \rightarrow Particle selection based on β vs p correlation

$e \ p \rightarrow e \ p \ \pi^0$

 π⁰ is reconstructed from all permutations of 2 photons (each > 400 MeV)

 Selection of fully exclusive events via 3 σ cuts on the missing energy and missing mass

$e p \rightarrow e p \pi^0$ kinematic coverage

$e p \rightarrow e p \pi^0$ kinematic coverage

$e \ p \rightarrow e \ p \ \pi^0$ beam spin asymmetry

- Integrated beam spin asymmetry of fully exclusive e p π^0 events
- Based on 1.8 % of the appoved beamtime

Summary and Conclusion

- Based on CLAS data, the $A_{LU}^{\sin(\Phi)}$ moment from the hard exclusive π^+ channel above the resonance region has been measured for the first time with nearly full coverage from forward to backward angles
- The results show a clear sign change from forward angle to backward angle, which may indicate a transition from the GPD to the TDA regime.
- A similar effect can be observed for π^0 and $\pi^{\scriptscriptstyle -}$
- The exclusive e p π^0 channel provides promising results from CLAS12
- The presented CLAS12 analysis is based on only close to 2 % of the approved RG-A beamtime
- A kinematic fitter for CLAS12 is in preparation and will be used for a better event selection of the fully exclusive channels in the future

