CLAS12 Deep Virtual ϕ

F.-X. Girod

Jefferson Laboratory / UConn

Jan 23rd 2019

CLAS12 DV ϕ

Outline

1 Introduction / Motivations

- 2 CLAS12 experiment
- **3** CLAS12 preliminary results
- Outlook / Beyond CLAS12

CLAS12 DV ϕ

2/ 31

Introduction / Motivations

Gluons at large x

E12-12-007

• Large glue density at x > 0.1

PDF from global fits (F_2 evolution, ν_{DIS} , jets)

Gluons carry more than 30% of the momentum for 0.1 < x

• 3D imaging of the nucleon

spatial distribution of valence quarks : elastic scattering, DVCS, ...

class

Jefferson Lab

Nucleon gluonic radius ? exclusive ϕ

23/01/19

Nucleon gluonic radius at 11 GeV

CLAS12 DV ϕ

F.-X. Girod

• Exclusive ϕ electroproduction as the best probe of gluon GPD at 11 GeV

Dominance of small-size configurations at $Q^2 \sim {\rm few}~{\rm GeV^2}$

GPD = Universal gluon form factor

• Gluonic radius as a function of x

 $\label{eq:small} \begin{array}{ll} \mathsf{Small} \ \mathsf{x} : \ \mathsf{radius} \ \mathsf{grows} \ \mathsf{through} \ \mathsf{parton} \\ \mathsf{diffusion} \end{array}$

x < 0.01 measured: J/ ψ and ϕ at HERA H1/ZEUS and Fermilab

x > 0.1 unknown range : ϕ with CLAS12

cla

Jefferson Lab

23/01/19

GPD description of ϕ production

• Goloskokov-Kroll 2008 model

includes finite size of $q\bar{q}$ pairs (Sudakov suppression)

Describes well available cross-section data

 Gluonic radius at 4 and 6 GeV from CLAS data consistent with extrapolation from higher energy

dipole mass $m_g^2 \sim 1~{
m GeV^2}$

23/01/19

CLAS12 Exclusive ϕ electroproduction

Analysis of the cross-section in two steps :

• Test the approach to small-size regime, through model-independent features

When do *t*-slopes become independent of Q^2 ? How does *W*-dependence change with Q^2 ? L/T ratio and *s*-channel helicity conservation

• Extract the gluonic radius accross the valence region from the *relative t*-dependence of the differential cross-section

Average gluonic radius : model independent Change with x : use GPD models (e.g. Double-Distribution)

$$\frac{\frac{d\sigma}{dt}(t)}{\frac{d\sigma}{dt}(t=0)} \propto \frac{\langle H^g(t) \rangle^2}{\langle H^g(t=0) \rangle^2} + E^g \text{ contribution}$$

$$\downarrow \langle b^g \rangle^2$$

CLAS12 DV ϕ

CLAS12 experiment

8/ 31

F.-X. Girod CLAS12 DV

23/01/19

9/ 31

class

The CLAS12 detector

Baseline equipments Forward Detector (FD)

- TORUS magnet (6 coils)
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter

Central Detector (CD)

- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight

Beamline

- Polarized target (transv.)
- Moller polarimeter
- Photon Tagger

Upgrades to the baseline & under construction

- RICH detector (FD)
- Forward Tagger (FD)
- Neutron detector (CD)
- Micromegas (CD)

JA F.-X. Girod

- Polarized target (long.)

23/01/19

CEBAF Large Acceptance Spectrometer

CLAS12 is a package of two complementary spectrometers

The central detectors in a solenoid field

The forward detectors around a toroidal field DIS experiments are interested in high Q^2 data Ordinary torus polarity is **negative inbending** Reactions with several negative particles in the forward direction may benefit from **negative outbending** polarity

 \mathbf{J}^{A} F.-X. Girod CLAS12 DV ϕ

.

23/01/19

11/ 31

clas

 $0.05 < x_B < 0.8$, $0.8 < Q^2 < 14$, 0.01 < -t < 5, $\theta_e > 4^\circ$, W > 1.5, E' > 0.55 cm long target ; Torus Fields : $\pm 1.0, \pm 0.75$; Sol. Field : 1.0, 0.7 Desired config : torus +0.75 and sol 0.7 (negative outbending)

Acceptance

Control over acceptance systematic errors using several channels

23/01/19

13/ 31

class

Particle identification

Charged hadrons identified with TOF

 $2.5\sigma_t$ illustrated, up to 6 GeV/c

Large background essentially suppressed for the charged kaon channel

Remaining background in the neutral kaon mode can be subtracted

class

Jefferson Lab

CLAS12 DV ϕ

23/01/19

Extraction of the LT-ratio

Extraction of gluonic profiles

CLAS12 DV ϕ

JA F.-X. Girod

Longitudinal cross-section

Corresponding sensitivity in transverse position space

$$b = 1/\sqrt{-t}$$

Error propagation study Skewness $\xi \neq 0$ neglected

class

Jefferson Lab

16/31

23/01/19

Projected gluonic radius

🚱 📢 F.-X. Girod CLAS12 DV ϕ 23/01/19

Fully Integrated Acceptances Table, results given in %

	Torus -1 / Sol 1	Torus -0.75 / Sol 0.7	Torus 1 / Sol 1	Torus 0.75 / Sol 0.7
	Torus -1 / Sol 1	Torus -0.75 / Sol 0.7	Torus 1 / Sol 1	Torus 0.75 / Sol 0.7
single e	28	40	52	54
proton	11	14	20	20
K+	32	31	14	18
К-	15	19	32	31
Full Excl	0.15	0.37	0.68	0.95
p miss	0.6	1.9	2.4	3.0
K+ miss	0.5	0.8	3.8	3.6
K- miss	1.5	2.1	0.98	1.4
One miss	2.6	4.9	7.1	8.1

23/01/19

¹D Integrated Acceptances

Torus 0.75 / Sol 0.7

Torus 1 / Sol 1

Torus -0.75 / Sol 0.7

Torus -1 / Sol 1

Projected Results for Deep ϕ t-slopes

CLAS12 DV ϕ

JA F.-X. Girod

Left column : ϕ acceptances used for amplitude extraction in SCHC test

Right column : $\cos\theta_{CM}$ of meson decay allows separation of σ_L and σ_T under SCHC

23/01/19

 σ_L t-slopes extracted for different magnetic fields Lower field and negative outbending torus are prefered

20/31

closes

🚱 🔁 F.-X. Girod 👘 CLAS12 DV 🖗

23/01/19

CLAS12 preliminary results

23/01/19

CLAS12 elastic and alignement

CLAS12 DV ϕ

23/01/19

23/31 cla

Data Selection

Here we only consider Fully exclusive final state $\textit{ep} \rightarrow \textit{ep}\mathsf{K}^+\mathsf{K}^-$ detected

Analysis based on ep "train": DST skimmed for identified electron and proton in coincidence

The data presented here corresponds to less than 3% of the PAC approved data All plots shown

next correspond to the same final selection of events EB PID:

• Electron:
$$p > 1.75$$
 GeV, $\theta > 7^{\circ}$, $|v_z| < 20$ cm, $\theta > 17^{\circ} \times (1 - \frac{p}{7 \text{ GeV}})$

• Proton:
$$0.4 GeV, $15 < \theta < 75^{\circ}$, $|v_z| < 20$ cm$$

• Kaons: $1.1 GeV, <math>\theta < 35^{\circ}$, $|v_z| < 20$ cm

class

Hadron PID: β vs p

Restricted momentum range to avoid pion contamination

Note: these distributions are obtained only from PID cut Inbending and Outbending presented together

23/01/19

Kinematical distributions

23/01/19

26/31

Jefferson Lab

class

Exclusivity

23/01/19

27/31

class

Exclusivity

23/01/19

27/31

class

Exclusivity

23/01/19

9 27/31

class

Mass Spectrum and background

23/01/19

28/31

🚱 📢 F.-X. Girod

CLAS12 DV ϕ

CO Jefferson Lab

Exclusive ϕ from epK⁺K⁻

JA F.-X. Girod CLAS12 DV ϕ

23/01/19

29/ 31

Jefferson Lab

close

Outlook / Beyond CLAS12

23/01/19

Outlook / Beyond CLAS12

- Deeply Virtual ϕ production: gluonic radius in the valence region
- CLAS12 data taking started, preparation for pass 1 well underway
- Observation of fully exclusive \u03c6 events
- Beyond CLAS12: ϕ and $J\Psi$ at EIC
- Simulations for EIC: individual channels, and full inclusive for background estimations
- Shared resources for EIC simulations?

