APS April Meeting 2019

#### Quasi-Free Cross Section Measurements of the $\pi^+\pi^-$ Electroproduction off the Bound Proton in Deuterium

**Speaker:** Iuliia Skorodumina (University of South Carolina)

Supported by the South Carolina NSF grant PHY-1812382 and the JSA/JLab Graduate Fellowship

CLAS Deuteron Target Experiment (ele run,  $E_{beam}$  = 2.039 GeV)





CLAS: B. A. Mecking et al., Nucl. Inst. Meth., Vol. A503, pp. 513-553, 2003.

# Differences from the Free Proton Experiment

1) Considerably more complex effects of initial and final state interactions due to the presence of an additional nucleon  $\rightarrow$  difficulties in exclusive event selection

2) Fermi motion of the target proton with the following consequences:

- Smearing of kinematic quantities (*W*, missing mass, etc.) if not all final particles are registered
- Different procedure of lab-to-cms transformation

• Moving proton experiment with fixed beam energy is equivalent to that on the proton at rest with varying beam energy

3) Off-shellness of the target proton

4) Possible modifications of reaction amplitudes



# Differences from the Free Proton Experiment

1) Considerably more complex effects of initial and final state interactions due to the presence of an additional nucleon  $\rightarrow$  difficulties in exclusive event selection

2) Fermi motion of the target proton with the following consequences:

• Smearing of kinematic quantities (W, missing mass, etc.) if not all final particles are registered

• Different procedure of lab-to-cms transformation

• Moving proton experiment with fixed beam energy is equivalent to that on the proton at rest with varying beam energy

3) Off-shellness of the target proton

4) Possible modifications of reaction amplitudes



# Analysis Goals

- The <u>integral</u> and <u>single-differential</u> cross sections of the reaction  $\gamma_v p(n) \rightarrow p'(n')\pi^+ \pi$ are extracted
- The cross sections are extracted in the <u>quasi-free</u> regime
- Measurements were performed in the <u>second resonance region</u> for
  - 1.3 GeV < W < 1.825 GeV and
  - $0.4 \text{ GeV}^2 < Q^2 < 1 \text{ GeV}^2$

NIVERSITY OF

$$\sigma_v^{int}(W,Q^2) = \int \frac{d^5 \sigma_v}{\mathrm{d}^5 \tau} \mathrm{d}M_{h_1 h_2} \mathrm{d}M_{h_2 h_3} \mathrm{d}\Omega_{h_1} \mathrm{d}\alpha_{h_1}$$



• The extracted cross sections will be compared with the cross sections of the analogous reaction off the <u>free</u> <u>proton</u> [1]

[1] G.V. Fedotov, Iu. Skorodumina et al. [CLAS Collaboration], Phys. Rev. C 98 (2018) No.2, 025203 (2018), arXiv:1804.05136.

## Monte Carlo Simulation with TWOPEG-D

- TWOPEG-D [2] is a new event generator for the quasi-free process of double-pion electroproduction off the moving proton
- The initial proton motion is accounted according to the Bonn potential [3]
- In this analysis TWOPEG-D was successfully used
  - ✓ To estimate the detector efficiency
  - ✓ To fill the kinematic cells with zero acceptance
  - $\checkmark$  To correct for the effects of the target motion



# Topologies for the $\gamma_{v} p(n) \rightarrow p'(n')\pi^{+}\pi^{-}$ reaction

- All final particles are registered (~10%) fully exclusive topology
- $\pi^{-}$  is missing (~70%)





# Selection of Double-Pion Events

| Cuts                                                  | Data | Simulation |
|-------------------------------------------------------|------|------------|
| Fiducial                                              | yes  | yes        |
| EC-cut Electron identification                        | yes  | yes        |
| CC-cut                                                | yes  | m no/yes   |
| $\beta$ vs. $p \longrightarrow$ Hadron identification | yes  | yes        |
| $\theta$ vs. $p$                                      | yes  | yes        |
| Electron momentum correction                          | yes  | no         |
| Proton energy loss correction                         | yes  | yes        |
| Exclusivity cut                                       | yes  | yes        |



OUTH CAROLINA

### Quasi-Free Regime vs Final State Interactions

#### Quasi-free regime



#### Final state interactions

- Interaction of final hadrons with each other → *rather small effect as is known from the double-pion production off the free proton*
- Interaction of final hadrons with the additional nucleon (neutron) = rescattering under the influence of the strong interaction via resonant and/or non-resonant mechanisms → *noticeable effect*



# FSI for $p(n)\pi^+\pi^-$ Final State

FSI strongly depend on:

- Invariant mass of final hadron system (W) ٠
- Scattering angles of final hadrons. • Hence FSI are topology dependent!

**Fully exclusive topology** 





 $M_{X[\pi^{-}]}^{2} = [P_{e}^{\mu} + P_{p}^{\mu} - P_{e'}^{\mu} - P_{p'}^{\mu} - P_{\pi^{+}}^{\mu}]^{2},$ 

where  $P_i^{\mu}$  are the four-momenta of the particle *i*.

# Smearing of the Reaction Invariant Mass (W)

Experimental event yield in the <u>fully exclusive topology</u>



$$W_{i} = \sqrt{(P_{p}^{\mu} + P_{\gamma_{v}}^{\mu})^{2}} \text{ (target-at-rest assumption)}$$
$$W_{f} = \sqrt{(P_{\pi^{+}}^{\mu} + P_{\pi^{-}}^{\mu} + P_{p'}^{\mu})^{2}}$$

- $W_f$  is better suitable for the cross section extraction, but it is not available in the  $\pi$  missing topology
- The cross section is therefore binned in  $W_i$  and hence is folded with the effects of the initial proton motion
- The corresponding cross section inaccuracy is corrected
- The correction is based on the Monte Carlo simulation
- The multi-dimensional correction factor is estimated as

$$\mathcal{F}(\Delta W \Delta Q^2 \Delta \tau) = \frac{N_{rest}(\Delta W \Delta Q^2 \Delta \tau)}{N_{moving}(\Delta W \Delta Q^2 \Delta \tau)}$$

 $N_{rest}$  – from TWOPEG off proton at rest  $N_{moving}$  – from TWOPEG-D off moving proton

#### Integral Cross Sections (W dependence)



**Black symbols** – extracted integral cross sections.

Error bars correspond to the combination of the statistical and model dependence uncertainties.

**Pink shadowed areas** correspond to the total uncertainty, which is the combination of the statistical, model dependence, and systematic uncertainties.

$$\sigma_v^{int}(W,Q^2) = \int \frac{d^5 \sigma_v}{d^5 \tau} dM_{h_1 h_2} dM_{h_2 h_3} d\Omega_{h_1} d\alpha_{h_1}$$

#### Integral Cross Sections (Q<sup>2</sup> Dependence)



**Black symbols** – extracted integral cross sections.

Error bars correspond to the combination of the statistical and model dependence uncertainties.

**Pink shadowed areas** correspond to the total uncertainty, which is the combination of the statistical, model dependence, and systematic uncertainties.

$$\sigma_v^{int}(W,Q^2) = \int \frac{d^5 \sigma_v}{d^5 \tau} dM_{h_1 h_2} dM_{h_2 h_3} d\Omega_{h_1} d\alpha_{h_1}$$



### **Differential Cross Sections**



ν

E

S I

N

OF

 $W = 1.6375 \text{ GeV}, Q^2 = 0.475 \text{ GeV}^2$ 

**Red symbols** – empty cells are NOT filled **Blue symbols** – empty cells are filled **Black symbols** – Fermi correction is applied **Green curve** – from EG off the free proton

$$\frac{\mathrm{d}\sigma_{v}}{\mathrm{d}M_{p'\pi^{+}}} \qquad \frac{\mathrm{d}\sigma_{v}}{\mathrm{d}M_{\pi^{-}\pi^{+}}} \qquad \frac{\mathrm{d}\sigma_{v}}{\mathrm{d}M_{\pi^{-}p'}} \\
\frac{\mathrm{d}\sigma_{v}}{\mathrm{d}[-\cos\theta_{p'}]} \qquad \frac{\mathrm{d}\sigma_{v}}{\mathrm{d}[-\cos\theta_{\pi^{-}}]} \qquad \frac{\mathrm{d}\sigma_{v}}{\mathrm{d}[-\cos\theta_{\pi^{+}}]} \\
\frac{\mathrm{d}\sigma_{v}}{\mathrm{d}\alpha_{p'}} \qquad \frac{\mathrm{d}\sigma_{v}}{\mathrm{d}\alpha_{\pi^{-}}} \qquad \frac{\mathrm{d}\sigma_{v}}{\mathrm{d}\alpha_{\pi^{+}}}$$

### Conclusion

- Quasi-free integral and single-differential cross sections of the reaction  $\gamma_{\nu} p(n) \rightarrow p'(n')\pi^+ \pi^-$  are extracted for the first time
- Methods of selecting events in quasi-free kinematics and unfolding the effects of the proton motion are developed
- The TWOPEG-D event generator was tested and for the first time used for the efficiency evaluation, filling cells with zero acceptance and unfolding the effects of the proton motion
- Further analysis will include the comparison of the obtained results with the corresponding results of the free proton experiment
- CLAS Analysis Note is almost ready for submission. The PhD thesis is in preparation



# Thank you!

### Exclusivity Cut in the Fully Exclusive Topology



SOUTH CAROLINA.

Black curve – data, Blue curve – simulation (FSI not included)

#### Exclusivity Cut in the $\pi$ -Missing Topology

$$M_{X[\pi^{-}]} = \sqrt{|M_{X[\pi^{-}]}^{2}|} = \sqrt{|[P_{\pi^{-}\ miss}^{\mu}]^{2}|} = \sqrt{|[P_{e}^{\mu} + P_{p}^{\mu} - P_{e'}^{\mu} - P_{p'}^{\mu} - P_{\pi^{+}}^{\mu}]^{2}|}$$



**Black histogram** – experimental data, **Blue histogram** – simulation, **Purple histogram** – their difference. **Green curve** – fit to the simulation, **Purple curve** – fit to the difference, **Red curve** – their sum.

#### The corresponding correction factor

$$F_{fsi}(\Delta W) = \frac{Area \ under \ green}{Area \ under \ red}$$



#### Unfolding the Effects of the Proton Motion

$$\frac{d^7 \sigma_{corr}}{dW dQ^2 d^5 \tau} = \frac{d^7 \sigma_{not \ corr}}{dW dQ^2 d^5 \tau} \times \mathcal{F}(\Delta W \Delta Q^2 \Delta \tau) \qquad \qquad \mathcal{F}(\Delta W \Delta Q^2 \Delta \tau) = \frac{N_{rest}(\Delta W \Delta Q^2 \Delta \tau)}{N_{moving}(\Delta W \Delta Q^2 \Delta \tau)}$$

 $N_{rest}$  – from TWOPEG off proton at rest,  $N_{moving}$  – from TWOPEG-D off moving proton





**Red symbols** – corrected experimental cross sections, **Blue symbols** – not corrected experimental cross sections

### **Cross Section Uncertainties**

- <u>Statistical uncertainties</u>
  - Due to the experimental statistics
  - Due to the Monte Carlo statistics
- Model dependence uncertainties
  - Due to the filling of the cells with zero acceptance
  - Due to the unfolding the effects of the proton motion
- <u>Systematic uncertainties</u>

| Source                                          | Average value |
|-------------------------------------------------|---------------|
| Electron identification and normalization       | 5%            |
| Integration over three sets of hadron variables | 1.6%          |
| Relative efficiency uncertainty cut             | 0.8%          |
| Correction due to FSI-background admixture      | 0.4%          |
| Radiative corrections                           | 5%            |
| Total                                           | 7.4%          |



#### Comparison with Free Proton Cross Sections



**Black symbols** – *free* proton cross sections (e1e,  $E_{beam} = 2.039$  GeV) [1]

**Red symbols** – *quasi-free* cross sections on proton in the deuteron (e1e,  $E_{beam} = 2.039 \text{ GeV}$ )

For both data-sets error bars show *statistical* and *model dependence* uncertainties combined

**Blue symbols** – their ratio



[1] G.V. Fedotov, Iu. Skorodumina et al. [CLAS Collaboration], Phys. Rev. C 98 (2018) No.2, 025203 (2018), arXiv:1804.05136.

#### Quasi-Free Regime and FSI for $p(n)\pi^+\pi^-$ Final State





#### Invariant Mass of the Final Hadronic System



23

#### **Double-Pion Kinematics**



