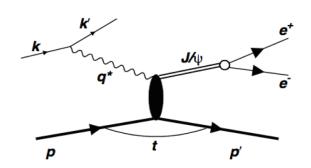
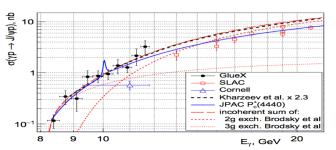
J/ψ Photoproduction Near Threshold With CLAS12

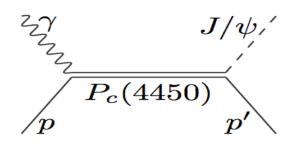
Joseph Newton for the CLAS Collaboration

Tuesday, June 25, 2019


Experiment Overview

Description


- Electrons accelerated by CEBAF scatter off a liquid Hydrogen target at low scattering angles through the exchange of a quasi-real photon at $Q^2 \sim 0$
- Detect the recoil proton and the e^+e^- from the decay of J/ψ
- Experiment 12-12-001 was approved for 120 days of beamtime on CLAS12 at a luminosity of 10³⁵ cm⁻² s⁻¹.
 Approximately 40% of data has been collected.


Physics Goals

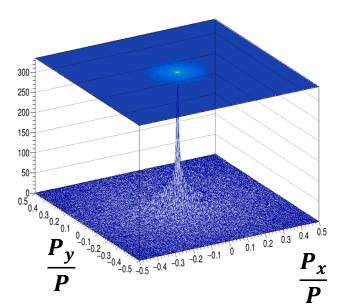
- Probe the distribution of color charge in the nucleon
 - Measure the t-dependence of the differential cross section of J/ψ photoproduction
- Study the production mechanism of J/ψ near threshold
 - Measure the total cross section as a function of photon energy
- Verify the existence of LHCb pentaquark through schannel J/ψ production

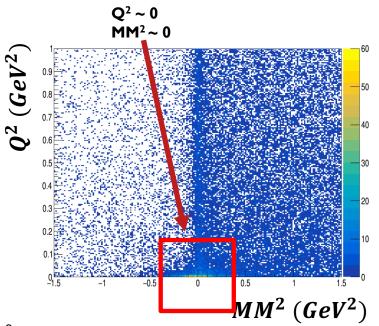
GlueX Published Cross Sections of J/ ψ Photoproduction (arXiv:1905.10811)

Particle Identification and Event Selection

Particle Identification

- Protons: comparing measured β with expected proton β using Time-Of-Flight detector
- For e+e- with p < 4.9 GeV/c: Cuts on E/p in Electromagnetic Calorimeter and photoelectrons in the High-Threshold Cherenkov Counter
- For e+e- with p > 4.9 GeV/c: same cuts, but with additional shower profile analysis

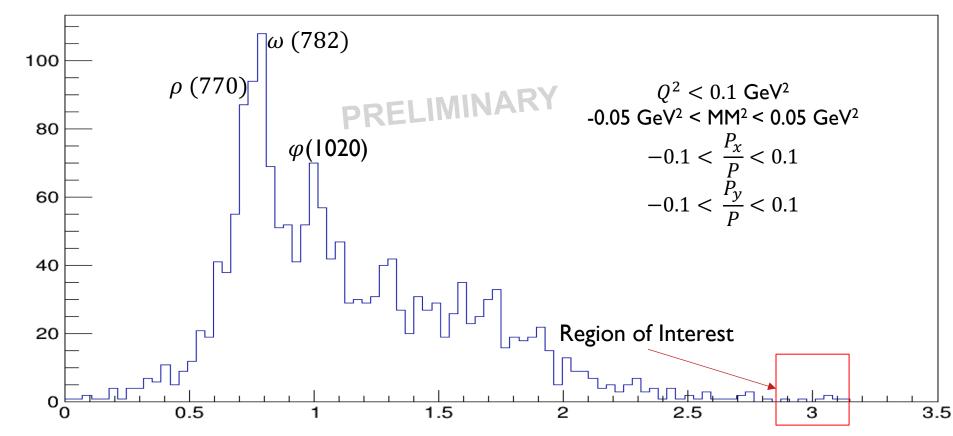

Event Selection


- Transverse missing momentum
- Q² and missing mass

$$ep \rightarrow e^+e^-p'X$$

$$X = e^{-}$$

Small Fractional Momenta of the Scattered Electron



Invariant Mass Distributions From Available Data

- Vector mesons are clearly visible in the invariant mass distribution of e+e- pairs after selecting quasi-real photoproduction events.
- The data sample accounts for ~ 1% projected total data.

e+e-Invariant Mass (GeV)

Current and Future Analysis

- Improve particle identification, especially for positrons and electrons with p > 4.9 GeV/c
- Study fiducial cuts and momentum corrections
- Refine event selection criteria
- Study kinematic fitting approach
- Study acceptances and efficiencies using simulated data merged with background
- Develop fitting procedure to the invariant mass distribution to extract number of J/ψ events in each kinematic bin
- The goal for the next year is to analyze the full statistics and measure cross sections

