JLAB HALL B NUCLEON SPIN STRUCTURE EXPERIMENTS

HiX2019 Κολυμπαρι Κρητη

Celebrating 2000 years of spin

SEBASTIAN KUHN OLD DOMINION UNIVERSITY

OVERVIEW

SCIENTIFIC GOALS

- Polarized Parton Distribution Functions
- Valence Quarks, Resonances and Duality
- Sum Rules, Higher Twist, and χPT

• RESULTS FROM THE 6 GEV ERA

- EG1
- EG1-DVCS
- EG4
- THE FUTURE PROGRAM
 - CLAS12
 - Run Group C
 - The EMC² Effect
- OUTLOOK AND SUMMARY

Inclusive lepton scattering

Parton model: DIS can access

$$q(x;Q^2), \langle h \times H \rangle q(x;Q^2)$$

Traditional "1-D" Parton **Distributions (PDFs)** (integrated over many variables)

$$F_{1}(x) = \frac{1}{2} \bigotimes_{i}^{2} q_{i}(x) \text{ (and } F_{2}(x) \gg 2xF_{1}(x)\text{)} \qquad g_{2}^{WW}$$

$$g_{1}(x) = \frac{1}{2} \sum_{i}^{i} e_{i}^{2} \mathbb{D}q_{i}(x) \text{ (and } g_{2}(x) \approx -g_{1}(x) + \int_{x} \frac{g_{1}(y)}{y} dy$$

At finite Q²: pQCD evolution ($q(x, Q^2), \Delta q(x, Q^2)$) \Rightarrow DGLAP equations) and gluon radiation

$$g_1(x,Q^2)_{pQCD} = \frac{1}{2} \sum_{q}^{N_f} e_q^2 \left[(\Delta q + \Delta q) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \partial C_q) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \frac{\partial C_G}{N_f} \right]$$

 \Rightarrow access to gluons. $\frac{\delta C_a}{\delta C_g} - \frac{Wilson}{\delta C_g}$ coefficient functions

SIDIS: Tag the flavor of the struck quark with the leading FS hadron \Rightarrow separate $q_i(x, Q^2), \Delta q_i(x, Q^2)$

Jefferson Lab kinematics: $Q^2 \gg M^2 \Rightarrow$ target mass effects, higher twist contributions and resonance excitations

- Non-zero $R = \frac{F_2}{2xF_1} \overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}}{\overset{\text{\tiny (l)}}{\overset{\text{\tiny (l)}}}{\overset{\quad (l)}}{\overset{\quad (l)}}}{\overset{\quad (l)}}{\overset{\quad (l)}}{\overset{\quad (l)}}{\overset{\quad (l)}}{\overset{\quad (l)}}}{\overset{\quad (l)}}{\overset{\quad (l)}}}{\overset{\quad (l)}}{\overset{\quad (l)}}{\overset{\quad (l)}}{\overset{\quad (l)}}{\overset{\quad (l)}}}{\overset{\quad (l)}}{\overset{\quad (l)}}}{\overset{\quad (l)}}{\overset{\quad (l)}}{\overset{\quad (l)}}{\overset{\quad (l)}}{\overset{\quad (l)}}}{\overset{\quad (l)}}{\overset{\quad (l)}}}{\overset{\quad (l)}}{\overset{\quad (l)}$

VALENCE REGION AND MODERATE Q²: SFS FOR $X \rightarrow 1$

Valence quark polarization

SU(6)-symmetric proton wave function in the "naïve" quark model:

$$p\uparrow\rangle = \frac{1}{\sqrt{18}} \left(3u\uparrow \left[ud \right]_{S=0} + u\uparrow \left[ud \right]_{S=1} - \sqrt{2}u\downarrow \left[ud \right]_{S=1} - \sqrt{2}d\uparrow \left[uu \right]_{S=1} - 2d\downarrow \left[uu \right]_{S=1} \right) \right)$$

In this model: d/u = 1/2, $\Delta u/u = 2/3$, $\Delta d/d = -1/3$ for all $x \Rightarrow$

$$\sum_{q} \Delta q = 1 \implies S_{p} = \frac{1}{2} \sum_{q} \Delta q = \frac{1}{2} \Delta \Sigma; \quad g_{A}^{(3)} = \Delta u - \Delta d = 5/3; \quad g_{A}^{(8)} = \Delta u + \Delta d - 2\Delta s = 1$$

Relativistic Correction: lower component reduces axial charge, adds to orbital angular momentum (p-wave) \Rightarrow

$$\sum_{q} \Delta q = \Delta \Sigma \approx 60\%; \quad g_A^{(3)} = \Delta u - \Delta d \approx 1.26; \quad g_A^{(8)} = \Delta u + \Delta d - 2\Delta s \approx 0.6$$

Hyperfine structure effect: S=1 suppressed => d/u = 0, $\Delta u/u = 1$, $\Delta d/d = -1/3$ for $x \rightarrow 1 => A_{1p} = 1$, $A_{1n} = 1$, $A_{1D} = 1$

pQCD: helicity conservation $(q\uparrow\uparrow p) \Rightarrow d/u = 2/(9+1) = 1/5$, $\Delta u/u = 1$, $\Delta d/d = 1$ for $x \rightarrow 1$

THE LIMIT Q^2 \rightarrow 0: GDH Sum Rule

$$I_{GDH} = \frac{M^2}{8\alpha \pi^2} \int_{thr}^{\infty} (\sigma_{1/2} - \sigma_{3/2}) \frac{dv}{v} = -\frac{1}{4} \kappa^2$$

 relates the difference of the photo-absorption cross section for helicity 1/2 and 3/2 to the nucleon magnetic moment, i.e. a connection between dynamic and static properties

 based on very general principles, as gauge invariance, dispersion relation, low energy theorem

 at finite Q² can be related to the integral of the spin structure function g₁

$$\Gamma_1 = \int g(x,Q^2) dx \xrightarrow{Q^2 \to 0} \frac{Q^2}{2M^2} I_{\text{GDH}}$$

 strong variation of nucleon spin properties as a function of Q²

Q²-dependence described by Chiral
 Perturbation Theory (χPT) at low Q²

The Limit $Q^2 \rightarrow 0$: Spin Polarizability

$$\int_{thr}^{\infty} (\sigma_{1/2} - \sigma_{3/2}) \frac{dv}{v^3} = 4\pi^2 \gamma_0$$

• γ_0 measures the response ("stiffness") of the nucleon spin against electromagnetic deformations along the spin axis

 Follows from same dispersion relation and low energy theorem (limit of forward Compton scattering) as GDH sum rule

can also be extended to finite Q²:

$$\Gamma_{3}^{N} = \int x^{2} g_{1}^{N} (x, Q^{2}) dx \xrightarrow{Q^{2} \to 0} \frac{Q^{6}}{16 \alpha M^{2}} \gamma_{0}^{N}$$

much more sensitive to low-energy (high x)
 part of the integral -> ideal for Jlab

• plus other polarizabilities: δ_{LT}

• \Rightarrow Chiral Perturbation Theory should be able to predict $\gamma_0(Q^2), \ \delta_{LT}(Q^2)$ and **b** in $\Gamma_1(Q^2) = -\frac{\kappa^2}{8M^2}Q^2 + bQ^4...$

JEFFERSON LAB IN PERSPECTIVE

SPIN STRUCTURE FUNCTIONS IN THE LAST 40 YEARS

Soffer 0.9 ----- LSS HF Perturbed QM 0.8 BBS 0.7 BBS+OAM 0.6 SU(6)-° √ 0.5 0.4 Eg1b Eg1-DVCS 0.3 SMC (1992) E143 (1994) 0.2 **HERMES (1996)** 0.1 E155 (1997) 0t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Х Eg1b Eq1-DVCS 09 SMC (1992) 0.8 E143 (1994) **HERMES (1996)** 0.7 E155 (1997) Soffer 0.6 ISS °**√** 0.5 HF Perturbed QM BBS 0.4 BBS+OAM SU(6) 0.3 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1

Х

FIG. 15. Comparison of the JAM15 IMC fits (red curves, with the average indicated by the black solid curve) with corresponding fits excluding all Jefferson Lab data (yellow curves, with the average given by the black dashed curve) for the twist-2 PDFs Δu^+ , Δd^+ , Δs^+ and Δg , the twist-3 distributions D_u and D_d , and the twist-4 functions H_p and H_n at $Q^2 = 1$ GeV². Note that *x* times the distribution is shown. For illustration each distribution is represented by a random sample of 50 fits.

-ex/0205020. Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, and A. Accardi:"Iterative Monte Carlo analysis of spin-dependent parton distributions", Phys. Rev. D **93**, 074005 (5 April 2016).

A. Deur, Y. Prok, V. Burkert, D. Crabb, F.-X. Girod, K. A. Griffioen, N. Guler, S. E. Kuhn, and N. Kvaltine: "High precision determination of the Q² evolution of the Bjorken sum", Phys. Rev. C **90**, 012009 (July 2014).

RESULTS FROM EG1B

RUN GROUP C

- Experiments with CLAS12 and a longitudinally polarized p/d target
- Tentatively scheduled for 6 months in 2021-2022 (First Installment)
- Just passed Experimental Readiness Review
- Comprises 6 approved experiments

Proposal ID	Title	Contact Person	PAC Rating	Awarded Days	
E12-06-109 🗈	Longitudinal Sping Structure of the Nucleon	Kuhn	A	80	
E12-06-109A 🗈	DVCS on the neutron with polarized deuterium target	Niccolai	RG proposal	(60)	
E12-06-119(b) 🗈	DVCS on longitudinally polarized proton target	Sabatie	A	120	
E12-07-107 🗈	Spin-Orbit Correlations with longitudinally polarized target	Avakian	A-	103	
E12-09-007(b) 🗈	Study of partonic distributions using SIDIS K production	Hafidi	A-	80	
E12-09-009 🗈	Spin-Orbit correlations in K production with polarized targets	Avakian	B+	103	

Total number of approved beam (PAC) days: 185 (120 p, 60 d, 5 auxiliary)

POLARIZED TARGET – FROZEN AMMONIA AND DEUTERATED AMMONIA IN 1K LIQUID HE BATH AND 5 T MAGNETIC FIELD, IRRADIATED WITH 140 GHZ MICROWAVES

1 K Refrigerator

Stable operation at ~1 K Heat shield < 28 K Fast cool-down: 3 hr following LN2 Low helium consumption: < 5 L/hr

^{в: Cell Top} 0.9412 к

MOut 30.00%

TGT:PT12:Bath_2_T

U.S. DOE PROPERTY

Jefferson Lab

Passed Experimental Readiness Review 6/19

LakeShore

0.9413 ĸ

L1 ^{0:} Cell Bot -OPen Loop Mode-Heat 0.00% of Off

336 Temperature Controller

A: Cell Bot

Readiness Review: Run Group C

QUARK POLARIZATION FROM KAON SIDIS

pDVCS simulations with RGC setup

pDVCS event generator (GENEPI): DVCS-BH on proton target, t<-1.2 GeV²

- □ ③ ③ ⓐ ⓐ analysis (PID + channel selection cuts)

n DVCS Target Spin and Double Spin Asymmetries

First time measurement of longitidunal target-spin asymmetry and double (beam-target) spin asymmetry

 $\Delta \sigma_{\mathbf{UL}} \sim \mathbf{sin} \phi \, \mathbf{Im} \{ F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + x_B/2\mathcal{E}) - \xi k F_2 \widetilde{\mathcal{E}} + \dots \}$

 $\Delta \sigma_{LL} \sim (\mathbf{A} + \mathbf{B} \cos \phi) \mathbf{R} \mathbf{e} \{ F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + \mathbf{x}_B / 2\mathbf{E}) - \xi k F_2 \widetilde{\mathcal{E}} + \dots \}$

 \rightarrow 3 observables (including BSA), constraints on real and imaginary CFFs of various neutron GPDs

L = $3/20 \cdot 10^{35}$ cm⁻²s⁻¹ Run time = 40 days P_t = 0.4; P_b = 0.85

 $eND_3 \rightarrow e(p)n\gamma$ CLAS12 + Longitudinally polarized target + **CND**

Will run in 2021

CLAS12: projections for flavor separation (ImH, ImE)

Worm gear TMDs are unique (no analog in GPDs)

H. Avakian, RGC, May 30

0.27 0.27 0.51 0.51 0.57 0.57 0.57 0.57 0.57 0.57

-0.1 - 4 CLAS12

0.2 0.4

0.2 0.4

X

TIMELINE RUN GROUP C

...followed by experiment with transversely polarized p target (HD-ICE)

TMDS – CLAS12 TRANSVERSE HD-ICE (?)

Sivers

Collins

POLARIZED EMC EFFECT?

Quark-Meson Coupling Model (QMC

0.2

0.4

Х

0.6

0.8

POLARIZED EMC EFFECT?

OUTLOOK: COMPLETING THE PICTURE

COMPASS, JLab

vs. JLab

RHIC, COMPASS,

FNAL, FAIR, JPARC

- > $\Delta u/u$ and $\Delta d/d$ at high x?] JLab @
- Nuclear effects on nucleon structure 12 GeV
- > Understanding the sea Δs , \overline{u} \overline{d} , $\Delta \overline{u}$ $\Delta \overline{d}$? JLab, FNAL, RHIC, COMPASS
- Orbital angular momentum? -> GPDs in 3D
- > Axial and Tensor charges of the nucleon
- Full mapping of all TMD PDFs in the valence and sea region
- Gluon helicity distribution at large x and a small x? What is the integral ∆G? JLab + COMPASS (NLO), RHIC, COMPASS SIDIS
- Test of universality RHIC, COMPASS, FNAL
- Test of prediction that time-odd TMDs (e.g., Sivers asymmetry) change sign in Drell-Yan processes
- > What happens at really small x << 0.01?

ENERGY LEVELS IN A HYDROGEN-LIKE ATOM

Putting it all together – example HFS (courtesy K. Griffioen, W&M):

 $E_{\rm HFS}(e^-p) = 1.4204057517667(9) \,{\rm GHz} = (1 + \Delta_{QED} + \Delta_B^p + \Delta_S) E_F^p + \dots$ Recoil $\checkmark \qquad \stackrel{\checkmark}{\Delta_S} = \Delta_Z + \Delta_{\text{pol}}$ (21 cm)Zemach: $\Delta_Z = -2\alpha m_e \langle r \rangle_Z (1 + \delta_Z^{rad})$ $\langle r \rangle_Z = -\frac{4}{\pi} \int_0^\infty \left(\frac{dQ}{Q^2} \right) \left[G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa} - 1 \right]$ $\Delta_{\text{pol}} = \frac{\alpha m_e}{2\pi (1+\kappa)M} (\Delta_1 + \Delta_2)$ $\Delta_1 = \frac{9}{4} \int_0^\infty \left(\frac{dQ^2}{Q^2} \right) F_2^2(Q^2) + \frac{8m_p^2}{Q^2} B_1(Q^2) \right\}$ $\delta_Z^{\mathrm{rad}} = \frac{\alpha}{3\pi} \left[2 \ln \frac{\Lambda^2}{m^2} - \frac{4111}{420} \right]$ $\Delta_2 = -24m_p^2 \int_0^\infty \frac{dQ^2}{Q^4} B_2(Q^2)$ $B_1 = \int_{0}^{x_{\rm th}} dx \,\beta(\tau) g_1(x,Q^2)$ Measurements of form factors, $B_2 = \int_{0}^{x_{\rm th}} dx \, \beta_2(\tau) g_2(x, Q^2)$ (generalized) polarizabilities and (spin) structure functions $\beta(\tau) = \frac{4}{9} \left(-3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)} \right)$ at small Q² are crucial. $\beta_2(\tau) = 1 + 2\tau - 2\sqrt{\tau(\tau+1)},$

PREDICTED DATA FROM CLAS12 - DIS

Proton

W > 2; Q² > 1

Deuteron

D/D FROM DIS

Up-to-date estimate for 1st run of RGC

As proposed

$\Delta D/D$ including sidis

Comprehensive Program with Longitudinal and Transverse H, D targest

	Experiment	Quantity	Physics	Target	particle species	Kinematics	beam request	run group
Worm gear, HT	E12-07-107	Α _{UL} sinφ Α _{UL} sin2φ		NH ₃ ND ₃	π⁺, π⁻, π ⁰	x= 0.1-0.7 P _T =0.1-1.2	30 days 50 days	
Flavor tagging (∆q); pT dep.	E12-09-007b	Δu, Δd, Δs Δu, Δd, Δs	x(Δu-Δd)	NH ₃ ND ₃	π+, π ⁻ , π ⁰ K+, K ⁻ , K ⁰ _s	x=0.1-0.7	30 days 50 days	170 days
Kaons Worm gear	E12-09-009	$\begin{array}{c} A_1 \\ A_{UL}{}^{sin\phi} \\ A_{UL}{}^{sin2\phi} \end{array}$		NH ₃ ND ₃	π+, π-, π ⁰ Κ+, Κ-, K ⁰ s	Q ² = 1 - 9 x=0.1-0.7 P _T = 0.1-1.2	30 days 50 days	
Two-Hadron (Deferred)	PR12-11-109b	A _{UL}	h _L	NH ₃ ND ₃	ππ, КК	x=0.05-0.6	30 days 50 days	
Transversity, Sivers, Worm Gear, Pretzelosity	PR12-11-111	SIDIS A _{UT}	Sivers, Transversity Pretzelosity	HD	π+,π ⁻ ,π ⁰ K+, K-, K ⁰ s	Q ² =1-10GeV ² x=0.1-0.7 P _T =0.2-1.5	100 days	100 days