Photoproduction of Λ* Resonances at CLAS

DNP Meeting October 14 - 17, 2019

U. Shrestha and K. Hicks Ohio University

Λ^*

- Missing baryon resonances play important role to explore the fundamental degrees of freedom inside hadrons.
- Study of quark dynamics to determine properties of hadrons that are responsible for spectrum of hadrons.

Baryon Spectra from Lattice QCD

- Missing baryon resonances play important role to explore the fundamental degrees of freedom inside hadrons.
- Study of quark dynamics to determine properties of hadrons that are responsible for spectrum of hadrons.

Motivation

Particle	J^P	Overall status	$N\overline{K}$	$\Lambda\pi$	$\Sigma\pi$	Other channels
$\Lambda(1116)$	1/2 +	****		\mathbf{F}		$N\pi$ (weakly)
$\Lambda(1405)$	1/2-	****	****	0	****	
$\Lambda(1520)$	3/2-	****	****	r	****	$\Lambda\pi\pi,\Lambda\gamma$
$\Lambda(1600)$	1/2+	***	***	b	**	
$\Lambda(1670)$	1/2-	****	****	i	****	$\Lambda\eta$
$\Lambda(1690)$	3/2-	****	****	d	****	$\Lambda\pi\pi,\Sigma\pi\pi$

Λ^* Photoproduction

• Photo-prodution off a proton creates a K^+ -meson and a Λ^* .

- Λ^* decays by $\Sigma\pi$ channel. Σ^+ gives off a n & π^+ , Σ gives off a n & π^- .
 - The final particles detected are K^+ , $\pi^+ \& \pi^-$.

B. A. Mecking et al. The cebaf large acceptance spectrometer (clas). Nuclear Instruments and Methods TAGGING in Physics Research A, 3:513–533, 2003. BEAM DUMP

The g12 experiment

 E_{beam} of photon5.7Beam PolarizationCi e^- Current60-Tagger Range5% - 95%Tagger Trigger Range3.6-5Torus Magnet $\frac{1}{2}B_{\text{max}}$ Target Length4Target Center (z location)-Target Polarization1Start Counter Offset10⁻⁴ radCollimator Radius6.

5.715 GeV Circular 60-65 nA 5% - 95% of e⁻ energy 3.6-5.441 GeV $\frac{1}{2}B_{max}$ (1930 A) 40 cm -90 cm ℓ H₂ None 0 cm 10⁻⁴ radiation lengths 6.4 mm

Outline (Cuts)

- Photon selection \rightarrow 1 and 2 photon case (Photon Multiplicity)
- PID \rightarrow K⁺, π^+ , π^- . Straight cuts of 1 ns on Momentum Vs Timing plots were made for particle identification.
- Trigger Correction was applied creating trigger efficiency map using the g12 trigger configuration.
- The g12 standard data analysis procedure was followed for Vertex, Fiducial & Paddle Cuts.
- A series of Missing Mass cut was followed to obtain the nature of Λ^* resonances.
- Further analysis includes an appropriate binning and fitting scheme to obtain yield and acceptances for differential cross-section.

$0.9 \leq MM(K^{+}\pi\pi) \leq 1$	Select neutron events
$0.48 \leq IM(\pi^+\pi^-) \leq 0.51$	Remove nK ⁰ channel
$1.15 \le MM(K^{+}\pi^{-}) \le 1.25$ $1.15 \le MM(K^{+}\pi^{+}) \le 1.25$	Select Σ^+ and Σ^- events for exclusive $\Sigma\pi$ channels
$\begin{array}{l} 1.44 \leq MM(K^{\scriptscriptstyle +}) \leq 1.6 \\ 1.62 \leq MM(K^{\scriptscriptstyle +}) \leq 1.76 \end{array}$	Fitting Range $\Lambda(1520)$ Fitting Range $\Lambda(1670)$ & $\Lambda(1690)$
$\begin{array}{l} 2.15 \leq W \leq 2.95 \; GeV \\ \text{-}0.9 \leq cos \theta^{\mathrm{K}_{+}} \leq 0.9 \end{array}$	Kinematic Ranges

Trigger Correction "new"

Trigger Efficiency Map

Invariant Mass ($\pi^+ \pi^-$) [GeV/c²]

Global Spectrum

Global spectrum integrated over all angles leads towards fitting the $\Lambda(1520)$ peak with a Lorentzian function that rests on a smooth quadratic background.

 $\Lambda(1520)$ dcs for $\Sigma^+\pi^-$ & $\Sigma^-\pi^+$ channels with g11 CLAS results

cos0....

cos₀c.m

cos

cosθ^σ....

Λ(1670) & Λ(1690)

Dantiala	J^P	PDG rating	Status as seen in			
Particle			$N\overline{K}$	$\Lambda\pi$	$\Sigma\pi$	Other Channels
$\Lambda(1405)$	1/2-	****	****		****	
$\Lambda(1520)$	3/2-	****	****	T 1.11	****	$\Lambda\pi\pi, \Lambda\gamma$
$\Lambda(1670)$	1'/2-	****	****	Forbidden	****	$\Lambda \eta$
$\Lambda(1690)$	3/2-	****	****		****	$\Lambda\pi\pi, \Sigma\pi\pi$

Data: $\Lambda(1670) \& \Lambda(1690) (\Sigma \pi^+ \text{ channel})$

Signal Fitting: $\Lambda(1670) \& \Lambda(1670) \Sigma^{-}\pi^{+}$ channel (W bins)

Next

- The $\Lambda(1520)$ cross section matched with the CLAS g11 data.
- $\Lambda(1520)$ cross sections for higher W value will be obtained.
- First attempt at $\Lambda(1670) \& \Lambda(1690)$ peaks show need for better understanding of the background function.
- Simulation are ongoing to study the nature of the peaks.
- Further Analysis of higher mass resonances, ie, $\Lambda(1670) \& \Lambda(1690)$, using partial wave analysis will be done.