

Correlations in Partonic and Hadronic Interactions 2020

Present and Future Studies of Color Transparency and Hadronization in Hall B

Michael H. Wood for the CLAS Collaboration Canisius College, Buffalo, NY, USA

Outline

The Question: How does a colored, bare quark evolve into a fully dressed (color neutral) hadron?

To address this:

- Brief introduction
- Highlights of Color Transparency and Hadronization Studies
 - CLAS6 analyses
 - CLAS12 experiments
- Summary

Outline

The Question: How does a colored, into a fully dressed (color neutral) ha

To address this:

- Brief introduction
- Highlights of Color Transpa Studies
 - CLAS6 analyses
 - CLAS12 experiments
- Summary

Hadronization

Study hard processes in nuclei to probe the QCD confinement dynamics: Color propagation (CP) and fragmentation - Hadronization process

Motivation - E_{e+} =27 GeV studies of pions and kaons by Hermes

Production time τ_p : Time spent by a deconfined quark to neutralize its color charge. Stimulated by energy loss to the medium by gluon exchange. <u>Observable</u>: transverse momentum broadening. $\Delta p_T^2 = \langle p_A^2 \rangle - \langle p_D^2 \rangle$

Formation time τ_f : Time required toform a regular hadron. Interactionswith hadron cross sections.Observable: $R_M^h = -$ multiplicity ratios

Color Transparency

- Creation of Small Size Configuration (SSC) in hard and exclusive reactions
- SSC experiences reduced attenuation before evolving to the fully dressed hadron
- In QCD, the color field of singlet objects vanishes as their size is reduced
- The CT signature is the increase of the medium "nuclear" transparency as a function of Q².

Color Transparency

Proton measurements:

• A(p,2p)

A. Leksanov et al. PRL 2001

• A(e,e'p)

<u>SLAC</u>

N. C. R. Makins et al. PRL 72, 1986 (1994) G. Garino et al. PRC 45, 780 (1992)

JLab

D. Abbott et al. PRL 80, 5072 (1998) K. Garrow et al. PRC 66, 044613 (2002)

Disagreement between results

Hall C in 12 GeV Era Experiment E12-06-107: Spokespersons - D. Dutta & R. Ent Collected 10 days of the A(e,e'p) proton knockout data -3.5 days @ 8.8 GeV and 6.5 days @ 11 GeV beam energy.

Meson measurements:

- A(*π*,di-jet) FNAL Aitala et al., PRL 86, 4773 (2001)
- A(e,e'π⁺) JLab Hall C
 B. Clasie et al. PRL 90, 10001 (2007)
 X. Qian et al., PRC 81, 055209 (2010)
- A(e,e' ρ^0)

DESY - Airapetian et al. PRL 90, 052501 (2003) JLab Hall B - L. El Fassi et al. PLB 712, 2012

Small size is more probable in two-quark systems. Onset of CT expected at lower Q^2 .

The Collaboration

CT and CP Collaboration

The Program

DIS channels: *stable* hadrons, accessible with 11 GeV JLab experiment PR12-06-117

Actively underway with existing 5 GeV data

meson	сτ	mass	flavor content	baryon	сτ	mass	flavor content
π^0	25 nm	0.13	uudd	p	stable	0.94	ud
π^+,π^-	7.8 m	0.14	ud, du	\bar{p}	stable	0.94	ud
η	170 pm	0.55	uuddss	Δ	79 mm	1.1	uds
ω	23 fm	0.78	uuddss	A(1520)	13 fm	1.5	uds
η'	0.98 pm	0.96	uuddss	Σ^+	24 mm	1.2	us
ϕ	44 fm	1.0	uuddss	Σ	44 mm	1.2	ds
f1	8 fm	1.3	uuddss	Σ^0	22 pm	1.2	uds
K	27 mm	0.50	ds	Ξ^0	87 mm	1.3	us
K^+, K^-	3.7 m	0.49	us, us	<u> </u>	49 mm	1.3	ds

CLAS6 - The Present

CLAS-6 E-02-104 (CT) & E-02-110 (CP) experiments were run as a single measurement.

0

electron beam direction Electromagnetic Shower Calorimeters 1700+ channels CF = 10%/E^{0,5} Solid target (C, Fe, Pb) Liquid deuterium

Color Propagation SIDIS Kinematics

 Q^2 : Four-momentum transfer,

> 1 GeV², to probe the intrinsic structure of nucleons $y = \frac{\nu}{E_h}$: Electron energy fraction transferred to a struck quark,

< 0.85, to reduce the size of the radiative effects on multiplicity ratios $W = \sqrt{M_N^2 + 2\nu M_N - Q^2}$: mass of the total hadronic final state (nucleon mass M_N)

> 2 GeV, to avoid a contamination from the resonance region x_F : Fraction of the CM longitudinal momentum carried by the observed hadron. > 0, selects the current fragmentation region.

< 0, selects the backward (target-remnant) fragmentation region.

Charged Pion Multiplicity Ratios

Charged Pion Multiplicity Ratios

Neutral Pion Multiplicity Ratios

Multiplicity Ratios - Comparison

w Meson Multiplicity Ratios

Thesis of A. Borquez (UTFSM grad. Student) Supervised by H. Hakobyan (UTFSM) and M. Wood (Canisius College)

Mass Diff. - G. Aad et al. (ATLAS), PRD 85, 052005 (2012)

w Meson Multiplicity Ratios

Thesis of A. Borquez (UTFSM grad. Student) Supervised by H. Hakobyan (UTFSM) and M. Wood (Canisius College)

Fe_D in (0.62 < Z < 0.69) χ^2 /ndf = 1.042 180 - b1 = 1.112 ± 0.023 Events / (0.005 bkgYields = 6962 \pm 104 160 $omegaMean = 0.3628 \pm 0.0022$ 140 omegaSigma = 0.0180 ± 0.0020 -omegaYields = 428 \pm 41 120 100 80 60 40 20 0.24 0.33 0.42 0.51 0.6 GeV

Mass Diff. - G. Aad et al. (ATLAS), PRD 85, 052005 (2012)

w Meson Multiplicity Ratios

 ω MR(Z) - Subtracted Bkg

9 off. - G. Aad et al. (ATLAS), PRD 85, 052005 (2012)

Λ^0 Analysis - Don't Forget the Baryons

- First ever study of the hadronization process of Λ⁰hyperon which probes the forward (current) and backward (target) fragmentation regions.
- Identify Λ^0 via its decay particles, π^- and p.
- Use the event mixing technique to subtract the combinatorial background.

T. Chetry and L. El Fassi, Preliminary Analysis

Λ^0 Multiplicity Ratios and Δp_T^2

Color Transparency - ρ Meson

L. El Fassi et al. PLB 712, 2012

Selection

W > 2 GeV : avoid resonance region $-t < 0.4 \text{ GeV}^2$: select diffractive process $-t > 0.1 \text{ GeV}^2$: exclude coherent production $z_h \ge 0.9$: select elastic channel

FMS Model - semi-classical Glauber formalism based on quantum diffusion model. Dot-dashed line includes CT effects and FSI interactions. Frankfurt, Miller & Strikman, PRC 78 (2008)

GKM: Transport Model (GiBUU) Dashed curve includes CT effects for ρ^0 produced in DIS regime only! Gallmeister, Kaskulov & Mosel, PRC 83, 015201 (2011)

CLAS12 - The Future

CT STudy: PR12-06-106

Liquid target CP STudy: PR12-06-117 Solid target

CLAS12 - The Future

- Span a wider range of nuclei masses Better understanding of the A dependence,
- Study the production of a variety of hadrons Improve our understanding of hadron's formation mechanism
- Cover much larger kinematical coverage,
- 10 times higher luminosity compared to CLAS6 (1000 higher than Hermes)
- Determine the two hadronization timescales.

CLAS12 - Color Propagation

Quark Propagation and Hadron Formation

hadron	сτ	mass	flavor content	limiting error (60 PAC days)			
π^0	25 nm	0.13	uudd	5.7% (sys)			
$\pi^{\scriptscriptstyle +}$, $\pi^{\scriptscriptstyle -}$	7.8 m	0.14	ud, du	3.2% (sys)			
η	170 pm	0.55	uuddss	6.2% (sys)			
ω	23 fm	0.78	uuddss	6.7% (sys)			
η'	0.98 pm	0.96	uuddss	8.5% (sys)			
ϕ	44 fm	1.0	uuddss	5.0% (stat)*			
fl	8 fm	1.3	uuddss	-			
<i>K</i> ⁰	27 mm	0.50	ds	4.7% (sys)			
<i>K</i> +, <i>K</i> -	3.7 m	0.49	us, us	4.4% (sys)			
р	stable	0.94	ud	3.2% (sys)			
\bar{p}	stable	0.94	ud	5.9% (stat)**			
Λ	79 mm	1.1	uds	4.1% (sys)			
A(1520)	13 fm	1.5	uds	8.8% (sys)			
Σ^+	24 mm	1.2	us	6.6% (sys)			
Σ-	44 mm	1.2	ds	7.9% (sys)			
Σ^0	22 pm	1.2	uds	6.9% (sys)			
Ξ^0	87 mm	1.3	us	16% (stat)*			
Ξ-	49 mm	1.3	ds	7.8% (stat)*			
$\frac{1}{2}$ kin a hin in a from 0.7.00 integrated even all $\frac{1}{2}$ and $\frac{1}{2}$ C $\frac{1}{2}$							

Dependency of observables (and thus derived quantities, such as production time, formation times, transport coefficient, in-medium cross section, etc.) on mass, flavor, and number of valence quarks

*in a bin in z from 0.7-0.8, integrated over all V, pT, φ_{Pq} , and Q²>5 GeV²

**in a bin in z from 0.6-0.7, integrated over all v, p_T, $\phi_{
m pq}$, and Q²>5 GeV²

CLAS12 - Color Transparency

CT Study with ¹²C, ⁶³Cu and ¹¹⁸Sn: Experiment PR12-06-106

Summary

Color Transparency

- Strong evidence for the onset of CT using ρ^0 electroproduction off nuclei: CLAS-6 5 GeV dataset showed 11 ± 2.3% (12.5 ± 4.1%) decrease in the absorption of ρ^0 in iron (carbon).
- SSC expansion time with FMS model were found to be between 1.1 fm and 2.4 fm for Q0 momenta between 2 and 4.3 GeV.
- At intermediate energies, CT provides unique probe of the space-time evolution of special configurations of the hadron wave function.
- Future CLAS12 measurement will allow to disentangle different CT effects (SSC creation, its formation and interaction with the nuclear medium)

Color Propagation

- The hadronization study is a complementary probe of the QCD confinement in cold and hot nuclear matter.
- A detailed comprehension of its mechanism helps constraining the existing theoretical models.
- CLAS6 Large (3D) data set for pions. First measurements on ω and Λ^0 .
- The future CLAS12 experiment will provide the multi-dimensional data needed to extract the production and formation time-scales.

Backup Slides

CLAS6 CP Motivation

Hermes results

A. Airapetian*, et al.*, Nucl. Phys. B 780 (2007) 1.

E= 27 GeV; Positron beam

Pions and kaons give similar attenuation

CLAS6 CP Motivation

Hermes data on momentum broadening

E= 27 GeV; Positron beam

CT Study: BNL and Hall C 12 GeV

CT Study with A(e,e'p)

Solid points - JLab Hall C Open points - non-JLab

Constant value fit for $Q^2 > 2 (\text{GeV/c})^2 \text{ has } \chi^2/\text{ndf} \approx 1.$

No evidence for CT.

N. C. R. Makins et al. PRL 72, 1986 (1994)

- G. Garino et al. PRC 45, 780 (1992)
- D. Abbott et al. PRL 80, 5072 (1998)
- K. Garrow et al. PRC 66, 044613 (2002)