

Correlations in Partonic and Hadronic Interactions

February 03 - 07, 2020, CERN

SIDIS Single Pion Beam Spin Asymmetry Measurements with CLAS 12

Stefan Diehl

for the CLAS collaboration

Justus Liebig University Giessen University of Connecticut

- The 3D nucleon structure in momentum space can be described by TMDs
- A way to acess these properties is the semi inclusive deep inelastic scattering

SIDIS cross section for an unpolarized target:

→ Contains model independent structure functions

$$\frac{d\sigma}{dx_B dQ^2 dz d\phi_h dp_{h\perp}^2} = K(x, y, Q^2) \Big\{ F_{UU,T} + \varepsilon F_{UU,L}$$

$$\frac{d\sigma}{dx_B \, dQ^2 \, dz \, d\phi_h \, dp_{h\perp}^2} = K(x,y,Q^2) \Big\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} + \varepsilon\cos(2\phi_h) F_{UU}^{\cos2\phi_h} + \lambda_e \sqrt{2\,\varepsilon(1-\varepsilon)}\sin\phi_h F_{LU}^{\sin\phi_h} \Big\}$$

$$F_{LU}^{\sin\phi} = \frac{2M}{Q} \mathcal{C} \left(-\frac{\hat{\mathbf{h}} \cdot \mathbf{k_T}}{M_h} \left(xeH_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\mathbf{h}} \cdot \mathbf{p_T}}{M} \left(xg^{\perp}D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right)$$

$$\text{twist-3 FF}$$

$$\text{twist-3 t-odd}$$

$$\text{dist. function}$$

$$\text{unpolarized dist.}$$

$$\text{function}$$

Physics Motivation

$$F_{LU}^{\sin\phi} = \frac{2M}{Q} \mathcal{C} \left(-\frac{\hat{\mathbf{h}} \cdot \mathbf{k_T}}{M_h} \left(xe^{H_1^{\perp}} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\mathbf{h}} \cdot \mathbf{p_T}}{M} \left(xg^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right)$$

$$\text{twist-3 FF}$$

$$\text{twist-3 t-odd}$$

$$\text{dist. function}$$

$$\text{unpolarized dist.}$$

$$\text{function}$$

- → A convolution of 4 TMDs and 4 fragmentation functions
- → Each term contains a twist 3 component
- → The results can be used in a global fit to constrain the TMDs and FF

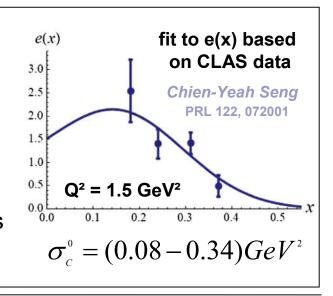
Additional constraints: i.e. from unpolarized structure functions

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\mathbf{h}} \cdot \mathbf{p}_T}{M_h} \left(xhH_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\mathbf{h}} \cdot \mathbf{k}_T}{M} \left(xf^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{H}}{z} \right) \right]$$

$$F_{UU}^{\cos 2\phi_h} = \mathcal{C} \left[-\frac{2(\hat{\mathbf{h}} \cdot \mathbf{p}_T)(\hat{\mathbf{h}} \cdot \mathbf{k}_T) - \mathbf{p}_T \cdot \mathbf{k}_T}{MM_h} h_1^{\perp} H_1^{\perp} \right].$$

Physics Motivation

and also from di-hadron SIDIS (Timothys talk)


$$F_{LU}^{\sin\phi_R} = -x \frac{|\vec{R}|\sin\theta}{Q} \left[\frac{M}{M_{\pi\pi}} x e^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_{\pi\pi}) + \frac{1}{z} f_1^q(x) \tilde{G}(z, \cos\theta, M_{\pi\pi}) \right]$$

Bacchetta, Radici, PRD69,074026 (2004), Aurore Courtoy, arXiv:1405.7659

- + constraints from other experiments (SIDIS + Drell-Yan)
- → A global fit is needed for a reliable extraction

What can we learn from the extracted TMDs?

- i.e. $e(x) \rightarrow \text{Recent publication by Chien-Yeah Seng (PRL 122)}$
- → The chiral-odd, twist 3 distr. function *e(x)* is related to the nucleon sigma terms of the quark chromo magnetic dipole moment
- → Essential inputs for the CP-odd pion-nucleon couplings
- → Main contributors of long range CP-odd nuclear forces

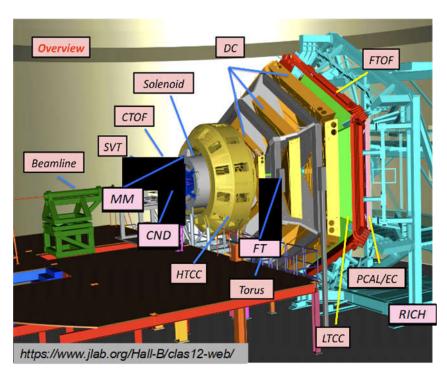
Physics Motivation

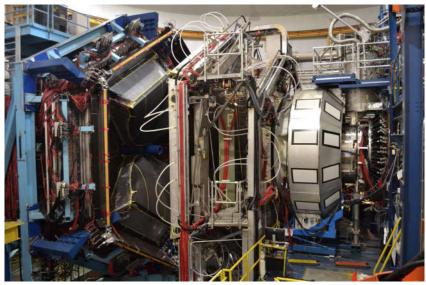
Goal of this study: Extract $F_{LU}^{\sin\phi}$ from single pion beam spin asymmetries

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos\phi}\cos\phi + A_{UU}^{\cos2\phi}\cos2\phi + \lambda_e A_{LU}^{\sin\phi}\sin\phi)$$

$$BSA = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{A_{LU}^{\sin\phi} \sin\phi}{1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos(2\phi)} \cos(2\phi)}$$

$$A_{LU}^{\sin\phi} = \sqrt{2\varepsilon(1-\varepsilon)} \frac{F_{LU}^{\sin\phi}}{F_{UU}}$$

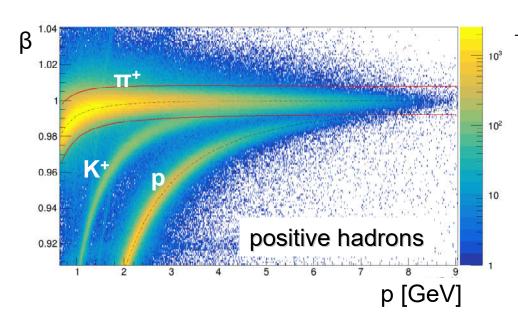

Past: Measurements have been performed with CLAS, HERMES and COMPASS


Advantages of CLAS12 <

Significantly higher statistics

➤ Extended kinematic coverage (Q², P_T)

Experimental Setup


- → Data recorded with CLAS12 during fall of 2018
- → 10.6 GeV electron beam → 85 % average polarization → liquid H₂ target
 - → Analysed data ~ 3 % of the approved RG-A beam time

Particle ID

Electron ID → Based on the electromagnetic calorimeter and the cherenkov counters

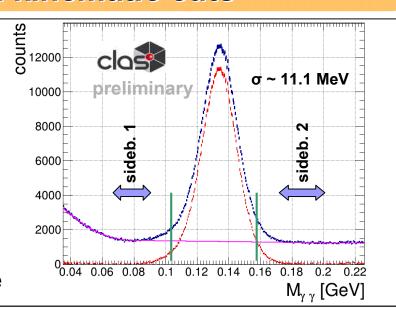
Hadron ID \rightarrow Based on β vs momentum correlation from TOF

→ Maximum likelihood particle ID

$$P(\beta) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{1}{2} \left(\frac{\beta - \mu}{\sigma}\right)^2\right)$$

- → Assign particle to species with the highest probability
- → Check if particle is within a certain confidence level

→ Provides a cleaner particle ID for inclusive measurements



Event selection and kinematic cuts

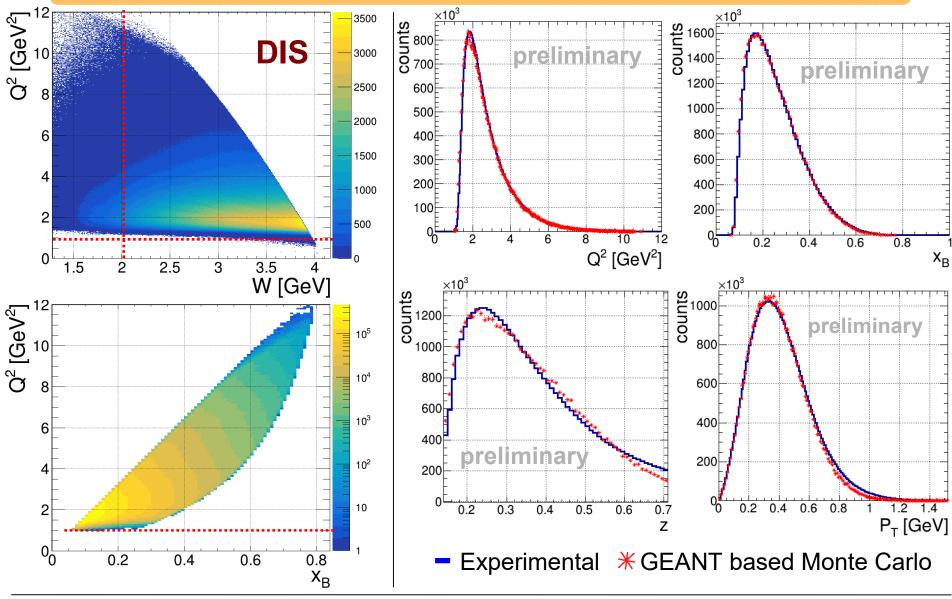
π^0 selection:

 $E_{\gamma} > 0.6 \text{ GeV}$ $\alpha(e-\gamma) > 8^{\circ}$ all 2γ pairs

- \rightarrow 2.2 σ cut around the peak positions
- → sidebands are used to estimate the asymmetry of the background
- → A sideband subtraction has been done

Kinematic cuts for all pions:

minimal electron energy: 2.0 GeV minimal pion energy: 1.25 GeV


DIS cut: $Q^2 > 1 \text{ GeV}^2$ W > 2 GeV

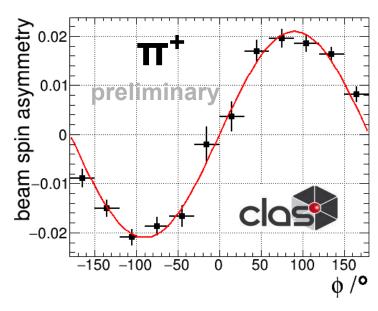
Additionally: Cut on the final state hadron momentum fraction z

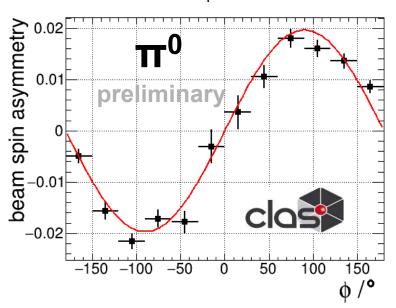
- \rightarrow z > 0.3 removes the "target fragmentation region"
- \rightarrow z < 0.7 removes contamination by pions from exclusive channels

Kinematic coverage for π^+ (similar for π^- and π^0)

Beam spin asymmetry

$$BSA_i = \frac{1}{P_e} \cdot \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-}$$
 $P_e = 85 \text{ % : average e-beam polarisation}$


Φ dependence without kinematic bins


$$<$$
Q² $> \sim 3.0 \text{ GeV}^2$ $<$ x_B $> \sim 0.27$ $<$ z $> \sim 0.42$ $<$ P_T $> \sim 0.45$

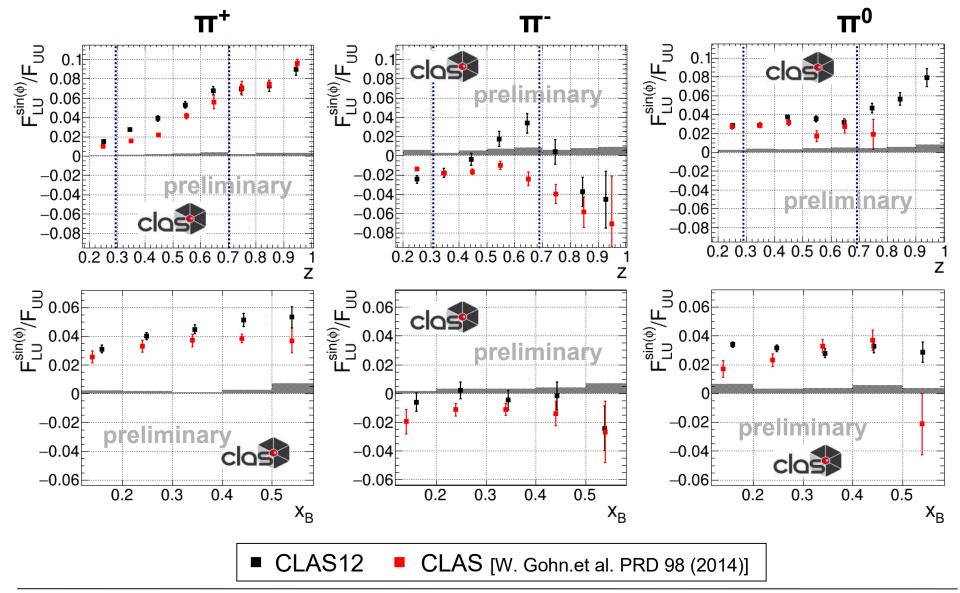
$$< x_B > \sim 0.27$$

$$< z > \sim 0.42$$

$$< P_T > \sim 0.45$$

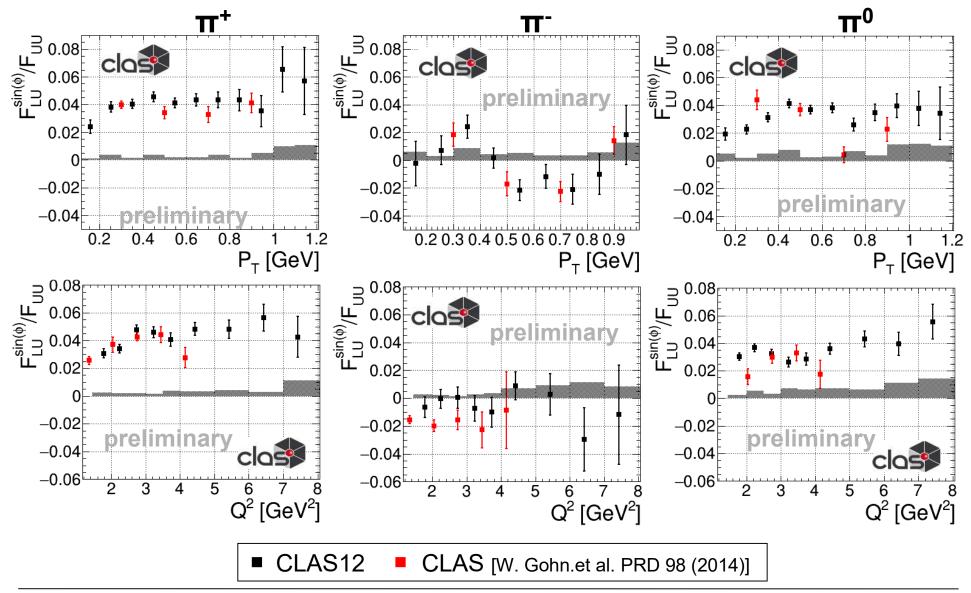
Extraction of the moments: a) A simple χ^2 fit of the ϕ dependence

b) Statistical extraction by minimizing


$$P = -\prod_{i=1}^{N} \left(1 + h \cdot P_e \right)$$

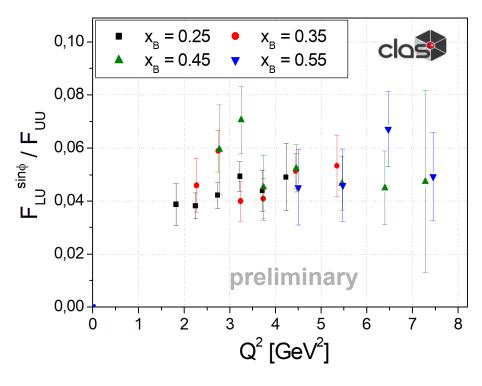
$$P_e \cdot \frac{gai}{1 + gauss(A_{viv}^{\cos(\phi)}, \sigma_e)}$$

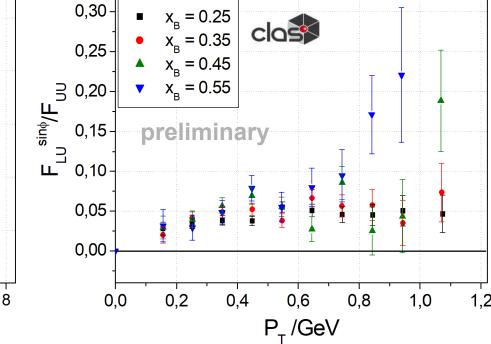
$$P = -\prod_{i=1}^{N} \left(1 + h \cdot P_e \cdot \frac{gauss(A_{LU}^{\sin(\phi)}, \sigma_1) \cdot \sin(\phi)}{1 + gauss(A_{UU}^{\cos(\phi)}, \sigma_2) \cdot \cos(\phi) + gauss(A_{UU}^{\cos(2\phi)}, \sigma_3) \cdot \cos(2\phi)} \right)$$



$F_{_{LU}}^{^{\sin\phi}}/F_{_{UU}}$ for a ${f z}$ and ${f x_B}$ binning

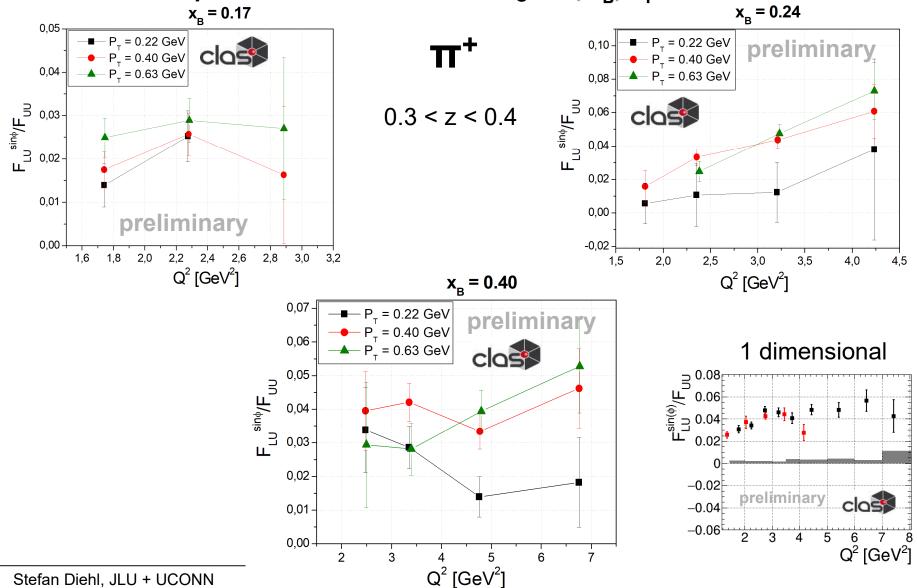
$F_{_{LU}}^{^{\sin\phi}}/F_{_{UU}}$ for a $extsf{P}_{ extsf{T}}$ and $extsf{Q}^{ extsf{2}}$ binning


How do things change with a multidimensional binning?



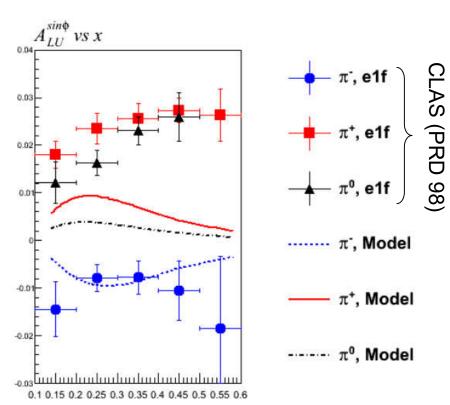
Step 1: A two dimensional binning

$$0.0 \text{ GeV} < P_T < 1.4 \text{ GeV}$$


$$1.0 \text{ GeV}^2 < Q^2 < 12 \text{ GeV}^2$$

How do things change with a multidimensional binning?

Step 2: A multidimensional binning in z, x_B, P_T and Q²



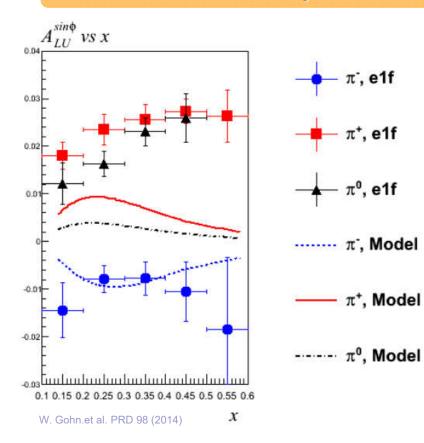
Comparison to theoretical predictions

A first theoretical model for single pion SIDIS was introduced in

- P. Schweitzer, Phys. Rev. **D67**, 114010 (2003) [hep-ph/0303011]
- A. V. Efremov, K. Goeke, and P. Schweitzer, Phys. Rev. **D73**, 094025 (2006) [hep-ph/0603054]

Simplifying assumption:

• only contribution from $\,e(x)\otimes H_1^\perp$


$$F_{LU}^{\sin\phi} = rac{2M}{Q} \mathcal{C} \left(-rac{\hat{\mathbf{h}} \cdot \mathbf{k_T}}{M_h} \left(x e H_1^{\perp} + rac{M_h}{M} f_1 rac{ ilde{G}^{\perp}}{z}
ight) + rac{\hat{\mathbf{h}} \cdot \mathbf{p_T}}{M} \left(x g^{\perp} D_1 + rac{M_h}{M} h_1^{\perp} rac{ ilde{E}}{z}
ight)
ight)$$

- signs are correctly reproduced
- ratio between π^+ and π^0 not
- magnitude at large x is too low

W. Gohn.et al. PRD 98 (2014)

Comparison to theoretical predictions

$$F_{LU}^{\sin\phi} = \frac{2M}{Q} \mathcal{C} \left(-\frac{\hat{\mathbf{h}} \cdot \mathbf{k_T}}{M_h} \left(x e H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\mathbf{h}} \cdot \mathbf{p_T}}{M} \left(x g^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right)$$

- → Recent global fits show that the other terms can not be neglected
- → Some of the TMDs and FF got better constrained
- → Updated calculations, including all terms and the most recent TMDs and FF are in progress by P. Schweitzer et al.
- → A multidimensional binning will enable a much better comparability with the calculations

Conclusion and Outlook

- CLAS12 enables the extraction of SIDIS pion BSA moments with high accuracy in an extended kinematic range.
- $F_{LU}^{\sin\phi}/F_{UU}$ is positive for π^+ and π^0 and close to zero or slightly negative for π^- .
- The presented analysis is based on only ~ 3 % of the approved RGA beam time.
- The statistics provided by the pass 1 cooking this spring will enable a precise multidimensional analysis over an extended kinematic region.

