

October 30, 2020

Fall Meeting of the Division of Nuclear Physics of the American Physical Society Oct. 29 – Nov. 1, 2020 Now Virtual Meeting! Hyatt Regency Hotel, New Orleans, LA

N→N* transition GPD measurements with CLAS12 at JLAB

Stefan Diehl

for the CLAS collaboration

Justus Liebig University Giessen University of Connecticut

Physics Motivation

3D structure of the ground state nucleon: Classical GPDs

→ Measured with processes like DVCS, DVMP, ...

3D structure of excited nucleon states: transition GPDs

unpolarized:	polarized:
$\int_{-1}^{1} dx H_M(x;\xi;t) = 2G_M^*(t)$ $\int_{-1}^{1} dx H_E(x;\xi;t) = 2G_E^*(t)$ $\int_{-1}^{1} dx H_C(x;\xi;t) = 2G_C^*(t)$ $\int_{-1}^{1} dx H_C(x;\xi;t) = 2G_C^*(t)$ $framsing the transition of the tra$	$\int_{-1}^{1} dx C_{1}(x;\xi;t) = 2C_{5}^{A}(t)$ $\int_{-1}^{1} dx C_{2}(x;\xi;t) = 2C_{6}^{A}(t)$ $\int_{-1}^{1} dx C_{3}(x;\xi;t) = 2C_{3}^{A}(t)$ $\int_{-1}^{1} dx C_{3}(x;\xi;t) = 2C_{3}^{A}(t)$
$\int_{-1}^{1} dx H_4(x;\xi;t) = 0 \qquad \qquad$	$\int_{-1} dx C_4(x;\xi;t) = 2C_4^A(t) $

8 twist-2 GPDs:

Stefan Diehl, JLU + UCONN

Experimental Access to Transition GPDs

Experimental access: Non diagonal DVCS process

First Theoretical Description of the Δ Region

P.A.M Guichon, L.Mosse, M. Vanderhaeghen, Phys. Rev. D68 (2003) 034018

 $E_e = 6 \text{ GeV}, \ Q^2 = 2.5 \text{ GeV}, \ x_B = 0.3, \ t_v = -0.5 \text{ GeV}^2$

CLAS12 Experimental Setup in Hall B

→ Data recorded with CLAS12 during fall of 2018

→ 10.6 GeV electron beam → 87 % average polarization → liquid H_2 target

→ Analysed data ~ 20 % of the approved RG-A beam time

Experimental Observables

Two final states have been studied:

$$\gamma^* p \to N^* \gamma \to p \pi^0 \gamma \to p \gamma \gamma \gamma$$
$$\gamma^* p \to N^* \gamma \to n \pi^+ \gamma$$

Kinematic cuts:

$$W > 2 \text{ GeV}$$
 $Q^2 > 1 \text{ GeV}^2$ $y < 0.8$ $-t < 2 \text{ GeV}^2$
 $E_{DVCS} > 2 \text{ GeV}$

→ A series of exclusivity cuts has been applied to select fully exclusive events

Accessible Kinematic Region

Resonance Mass Spectrum for $N^*{\rightarrow}n\pi^+$

Stefan Diehl, JLU + UCONN

The Pion Longitudinal Momentum Fraction

Resonance Mass Spectrum in Bins of α for $N^*{\rightarrow}n\pi^+$

Resonance Mass Spectrum for $0.1 < \alpha < 0.4$

Resonance Mass Spectrum for $N^{*} \rightarrow p \pi^{0}$

→ Also for the $p\pi^0$ final state, a cut on α helps to separate clean Δ events

Conclusion and Outlook

- CLAS12 in combination with the upgraded CEBAF provide excellent conditions to measure the non-diagonal DVCS process
- Resonance structures can be identified in the pion nucleon invariant mass spectrum
- A cut on the pion longitudinal momentum fraction α can help to separate the Δ resonance
- A first BSA extraction provides a qualitative agreement with transition GPD based theory predictions

