Correlations in Partonic and Hadronic Interactions – (2020 CPHI)

Charged dihadron beam-spin asymmetries from CLAS12

Timothy B. Hayward for the CLAS Collaboration

Toward a full collinear description of the nucleon

• At twist-3, the nucleon is described by 6 collinear PDFs.

twist-2	f(x)	g(x)	h _l (x)
twist-3	e(x)	h _L (x)	g _T (x)

- f(x), g(x) and $g_T(x)$ are measured through DIS.
- The transversity distribution, h₁(x), is chiral-odd and so must be accessed through SIDIS where it couples to a chiral-odd fragmentation function.
- e(x) and h_L(x) are poorly known.
- The golden channels to access these poorly known PDFs are through the SIDIS dihadron asymmetries A_{LU} and A_{UL}.

Colinear twist 3 PDF e(x)

- Insight into largely unexplored quark-gluon correlations.
- $\int x^2 e(x) dx \rightarrow \bot$ force on \bot polarized quarks in an unpolarized nucleon, "Boer-Mulders force".
- x integral related to the marginally known scalar-charge of the nucleon and the pion-nucleon sigma term.
- BSAs sensitive to e(x) has sizable model predictions:

BSA $ep \rightarrow e'\pi^+\pi^- + X$: Clean access to e(x)

• See e.g. Aurore Courtoy, arXiv:1405.7659

$$F_{LU}^{\sin\phi_R} = -x \frac{|\vec{R}|\sin\theta}{Q} \left[\frac{M}{M_{\pi\pi}} x e^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_{\pi\pi}) + \frac{1}{z} f_1^q(x) \tilde{G}(z, \cos\theta, M_{\pi\pi}) \right]$$

• The PDF e(x) appears coupled to the Interference Fragmentation Function.

Other extractions are possible

- Dihadron studies allow for the existence of DiFFs with no single hadron analog.
- G₁[⊥] describes the azimuthal dependence of an unpolarized hadron pair on the helicity of the outgoing quark.
- Completely unmeasured.

Accessible in the sin($\Phi_h - \Phi_R$) modulation in dihadron longitudinal single spin asymmetries, weighted by P_h^{\perp} / M_h

$$A_{LU}^{\Rightarrow}(x, y, z, M_h^2) = \frac{1}{M_h} \frac{\langle P_{h\perp} \sin(\varphi_h - \varphi_R) \rangle}{\langle 1 \rangle} = \lambda_l \frac{C'(y)}{A'(y)} \frac{\sum_a e_a^2 f_1^a(x) z G_1^{\perp a}(z, M_h^2)}{\sum_a e_a^2 f_1^a(x) D_1^a(z, M_h^2)}$$

CLAS12 Experimental Setup

- Data taken during Fall 2018.
- 10.6 GeV, longitudinally polarized beam, H₂ target.
- Analyzed data ~3% of approved beam time.

CLAS12 kinematic reach

The low Q² range of Jefferson Lab is ideal for extraction of twist-3 quantities.
 p(e,e')X

Plots based on 200 min. of data taking

Particle ID

- Electron
 - Electromagnetic calorimeter.
 - Cherenkov detector.
 - Vertex and fiducial cuts.
- Hadron
 - β vs p comparison between vertex timing and event start time.
 - Vertex and fiducial cuts.

Tuning the Monte Carlo

- Long term CLAS goal to study the multiplicities of dihadrons.
- Lund string fragmentation MC tuned by altering the widths and fraction of events coming from vector mesons.
- Comparison between files produced with 30% and 70% VM decay indicates a large percentage of events coming from decays.

Orthogonality of Modulations

• If the yield data do not cover the full ϕ_R , ϕ_H and θ ranges the orthogonality of amplitudes can be impacted.

$ \ell,m angle$	twist-2	twist-3
0,0 angle	0	$\sin \phi_h$

$ \ell,m angle$	twist-2	twist-3
$ 1,1\rangle$	$\sin\theta\sin\left(\phi_h-\phi_R\right)$	$\sin\theta\sin\phi_R$
1,0 angle	0	$\cos\theta\sin\phi_h$
$ 1,-1\rangle$		$\sin\theta\sin\left(2\phi_h-\phi_R\right)$

$ \ell,m angle$	twist-2	twist-3
$ 2,2\rangle$	$\sin^2\theta\sin\left(2\phi_h-2\phi_R\right)$	$\sin^2\theta\sin\left(-\phi_h+2\phi_R\right)$
$ 2,1\rangle$	$\sin\theta\cos\theta\sin\left(\phi_h-\phi_R\right)$	$\sin\theta\cos\theta\sin\phi_R$
$ 2,0\rangle$	0	$(3\cos^2\theta - 1)\sin\phi_h$
$ 2,-1\rangle$		$\sin\theta\cos\theta\sin\left(2\phi_h-\phi_R\right)$
$ 2,-2\rangle$		$\sin^2\theta\sin\left(3\phi_h - 2\phi_R\right)$

Gliske et. al: https://arxiv.org/pdf/1408.5721.pdf

- Long term plan... evaluate a full orthogonality matrix.
- For now... fit to the modulations with the largest contributions:

 $A_r \sin(\phi_R) + A_{hr} \sin(\phi_H - \phi_R) + A_h \sin(\phi_H)$

Extracting A_{LU}

- Select $ep \rightarrow e'\pi^+\pi^- + X$.
- Calculate ϕ_R and ϕ_H angle of pion pair.
- Fit to asymmetry $\frac{N^+ N^-}{N^+ + N^-} (\phi_R, \phi_H)$.
- Correct with P_{beam}~86%.
- Example for 0.22 < x < 0.25:

Channel selection

- Q²>1.0 GeV²
- W>2.0 GeV
- z<0.95
- M_{miss}>1.05 GeV
- x_F>0
- y<0.8
- p_{πi} > 1.25 GeV

Preliminary results on ϕ_R modulations

- A_{LU} approximately 3% asymmetries.
- Trend of increasing asymmetries in x, z and $M_{\pi\pi}$ expected.

Multidimensional binning

- Asymmetries enhanced when binned in $M_{\pi\pi}.$
- Much finer multidimensional binning coming with more statistics.

Summary

- Preliminary results of ϕ_R and ϕ_H ϕ_R modulations in dipion events from the CLAS12 Fall 2018 dataset shown.
- Indications of nonzero signal, particularly for ϕ_R 's $A_{LU}(x)$ which is sensitive to e(x).
- Likely a significant fraction of dihadron events are coming from vector meson decay.
- Full statistics will enable a rich multidimensional analysis.
- Possible future efforts
 - Expansion to other pion combinations ($\pi^+ \pi^0$, $\pi^- \pi^0$, etc.)
 - Same sign pairs to test the ρ-resonance model.
 - Kaon asymmetries with improved RICH detector calibrations.
 - Flavor separation when data combined with CLAS12 deuterium target experiments.

