Photoproduction of Λ^* Resonances at CLAS

2020 Fall Meeting of the APS Division of Nuclear Physics October 30, 2020

Utsav Shrestha and Ken Hicks Ohio University

Introduction

2200r 2200 Ν Σ_{8} Ξ Σ_{10} Ξ_{10} Ω Δ Λ_1 Λ_8 2100 2100 2000 2000 (MeV) 1900 (MeV) _____Λ(1690) 1900 Ξ Ξ Δ(1520) 1800 1800 $\Lambda(1670)$ $\Lambda(1405)$ 1700 1700 B. G. Edwards, N. Mathur, D. G. Richards, and S. J. Wallace (Hadron Spectrum Collaboration), Flavor structure of the excited baryon spectra from lattice ocd. Phys. Bev. D 87, 054506 (2013) 1600 1600 3- 5- $\frac{3^{-}}{2}$ 3^{-} $3^ 1^{-}$ 3^{-} 5^{-} 3 3^{-} $\frac{1^{-}}{2} \frac{3^{-}}{2}$ 5 5 1^{-} 1^{-} 1^{-} 3^{-} 2 2 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Lattice QCD Calculations

The Particle Data Group Summary

Phase at Resonances in $\Sigma\pi$ Channel

Ohio University

J^P $(D, L_N^P) S$ Octet members Singlets $(56,0^+_0) \ 1/2 N(939) \ \Lambda(1116) \ \Sigma(1193)$ $1/2^{+}$ $\Xi(1318)$ $1/2^{+}$ $(56.0^+_2) \ 1/2 N(1440) \Lambda(1600) \ \Sigma(1660)$ $\Xi(1690)^{\dagger}$ $(70.1^{-}_{1}) \ 1/2 N(1535) \Lambda(1670) \Sigma(1620)$ $1/2^{-}$ $\Xi(?)$ $\Lambda(1405)$ $\Sigma(1560)^{\dagger}$ $(70,1_{1}^{-}) \ 1/2 N(1520) \Lambda(1690) \ \Sigma(1670)$ $\Xi(1820)$ $\Lambda(1520)$ $3/2^{-}$ $1/2^{-}$ $(70,1_1^-) \ 3/2 N(1650) \Lambda(1800)$ $\Sigma(1750)$ $\Xi(?)$ $\Sigma(1620)^{-1}$ $(70,1_1^-) \ 3/2 N(1700) \Lambda(?)$ $\Sigma(1940)^{\dagger} \Xi(?)$ $3/2^{-}$ $5/2^{-}$ $(70,1_1^-)$ 3/2 N(1675) Λ (1830) $\Sigma(1775)$ $\Xi(1950)^{\dagger}$ $1/2^{+}$ $(70,0^+_2) \ 1/2 N(1710) \Lambda(1810) \ \Sigma(1880)$ $\Xi(?)$ $\Lambda(1810)^{\dagger}$ $(56,2^+_2)$ 1/2 N(1720) A(1890) $\Sigma(?)$ $\Xi(?)$ $3/2^{+}$ $5/2^{+}$ $(56,2^+_2)$ 1/2 N(1680) $\Lambda(1820)$ $\Sigma(1915)$ $\Xi(2030)$ $7/2^{-1}$ $(70,3^{-}_{3}) \ 1/2 N(2190) \Lambda(?)$ $\Sigma(?)$ $\Xi(?)$ $\Lambda(2100)$

 $\Xi(?)$

 $\Xi(?)$

 $\Sigma(?)$

 $\Sigma(?)$

 $(70,3^{-}_{3}) \ 3/2 N(2250) \Lambda(?)$

 $(56,4^+_4)$ 1/2 N(2220) $\Lambda(2350)$

The Quark Model

2020 Fall Meeting of the APS Division of Nuclear Physics Photoproduction	of Λ^* at CLAS Utsav Shrestha	CLAS Collaboration

 $9/2^{-}$

 $9/2^+$

The Reaction

$$\gamma p \to K^+ \Lambda(1520) \to K^+ \Sigma^{\pm} \pi^{\mp}$$

 $\Lambda(1520) \to \Sigma^{\pm} \pi^{\mp} \to n \pi^{\pm} \pi^{\mp}$

Oct 22, 2020

2020 Fall Meeting of the APS Division of Nuclear Physics | Photoproduction of Λ^* at CLAS | Utsav Shrestha | CLAS Collaboration | Ohio University

Oct 22, 2020

Differential Cross-sections

- The $\Lambda(1520)$ differential cross sections are shown as a function of CM angle and invariant 4-momentum transfer *t*, and extended for higher *W*.
- The *g12* results are in good agreement with previous CLAS measurements.
- The model calculations by Nam *et. al.* (2010), shown as dashed curves, reproduce the data very well.
- Some deviations at forward angles for W > 2.7 GeV may need more sophisticated theoretical approaches.

Systematic Uncertainties

Source	Description	Uncertainty
<i>t</i> -slope dependence	<i>b</i> = 2.0 <i>vs</i> . <i>b</i> = 1.0	0.78%
Timing Cut	3σ vs. 2.5σ	4.11%
Minimum p cut	Minimum p vs. no cut	0.20%
z-Vertex Cut	-110 < z < -70 vs. $-108 < z < -72$	1.28%
Fiducial Cut	50%(nominal) vs. 100%(tight)	3.13%
Background Function	Pol2 vs. Pol1	2.07%
Signal Integration Range	3.0 <i>σ vs</i> . 3.5 <i>σ</i>	0.43%
Flux Consistency/Luminosity	g12	1.70%
Sector by Sector	g12	5.90%
Target	g12	0.50%
Total Systematic Uncertainty	Added in quadrature	8.45%

Discussion and Conclusion

- The theory calculations are the numerical results without the *N*^{*} contribution, and conserve gauge invariance.
- Theoretical study has concluded that the K^* -N- $\Lambda(1520)$ coupling must be very small to explain the data.
- Calculations with N^* show very small contribution, just above threshold, and is limited to the first W bin. Such calculations include only N^* resonances with mass below 2.2 GeV.
- The simplest theoretical model with a pseudoscalar *K*-meson exchange, assuming *t*-channel dominance, is sufficient to explain our data, without other processes like Regge, *K*^{*} and hyperon resonances.
- This theoretical model can be used to study higher N^* resonances as well.

Extras

Λ(1520) SDME

Barber et. al., (1980)

Oct 22, 2020

2020 Fall Meeting of the APS Division of Nuclear Physics | Photoproduction of Λ* at CLAS | Utsav Shrestha | CLAS Collaboration | Ohio University

$K^{*0} \rightarrow K^+ \pi^-$ Backgound

Model prediction showing the difference in K^{*0} background contributions to the decay of Λ^* into two channels $\Sigma^+\pi^-$ (red) and $\Sigma^-\pi^+$ (blue).

Σ(1670) 3/2⁻⁻

$$I(J^P) = \mathbb{1}(\tfrac{3}{2}^-)$$

Mass m = 1665 to 1685 (≈ 1670) MeV Full width $\Gamma = 40$ to 80 (≈ 60) MeV

$\Lambda^+ \rightarrow \Sigma^+ \pi^- \text{ or } \Sigma^- \pi^+$	
<0 0 1 +1 1 -1> = 1/√3	
$<0 0 1 -1 1 +1> = 1/\sqrt{3}$	

• *

Σ(1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	7–13 %	414
$\Lambda\pi$	5–15 %	448
$\Sigma \pi$	30-60 %	394

 Σ^{0} coupling to the decay of $\Sigma^{+}\pi^{-}\Sigma^{-}\pi^{+}$

$$\Sigma^{0} \rightarrow \Sigma^{+} \pi^{-} \text{ or } \Sigma^{-} \pi^{+}$$
<1 0 | 1 +1 1 -1> = $1/\sqrt{2}$
<1 0 | 1 -1 1 +1> = $-1/\sqrt{2}$

Trigger Correction "new"

Oct 22, 2020

2020 Fall Meeting of the APS Division of Nuclear Physics | Photoproduction of Λ^* at CLAS | Utsav Shrestha | CLAS Collaboration | Ohio University

Trigger Efficiency Map

Data: π⁺, Sector 2

 π^+

Data: π^+ , Sector 1

Oct 22, 2020