Mechanical properties of the nucleon with the CLAS12

F.-X. Girod

GW University / UConn

Oct 30th 2020

Diffraction and Imaging

Huygens-Kirchhoff-Fresnel principle

$$\vec{q} = \vec{k} - \vec{k'}$$

The interference pattern is given by the superposition of spherical wavelets

$$f(\Omega_{\vec{q}}) = \int \frac{\mathsf{d}^3 \vec{r}}{(2\pi)^3} F(\vec{r}) \mathsf{e}^{i \vec{q} \cdot \vec{r}}$$

Fourier imaging

Elastic scattering

Form Factors

Probing deeper using virtual photons

Hofstadter Nobel prize 1961

"The best fit in this figure indicates an rms radius close to $0.74\pm0.24\times10^{-13}$ cm."

Imaging in transverse impact parameter space

1-D distribution in longitudinal momentum space

Deep Exclusive Scattering

Generalized Parton Distributions

$$\begin{split} \gamma^* p &\to \gamma p', \ \gamma^* p \to \begin{cases} \rho p' \\ \omega p' \\ \phi p' \\ \phi p' \\ \end{bmatrix} \\ & \text{Bjorken regime :} \\ Q^2 \to \infty, \ x_B \text{ fixed} \\ t \text{ fixed } \ll Q^2, \ \xi \to \frac{x_B}{2 - x_B} \\ \end{cases} \\ \\ \frac{p^+}{2\pi} \int dy^- e^{igp^+ y^-} \langle p' | \bar{\psi}_q(0) \gamma^+(1 + \gamma^5) \psi(y) | p \rangle \\ &= \bar{N}(p') \left[H^q(x, \xi, t) \gamma^+ + E^q(x, \xi, t) i \sigma^{+\nu} \frac{\Delta_{\nu}}{2M} \\ &+ \bar{H}^q(x, \xi, t) \gamma^+ \gamma^5 + \bar{E}^q(x, \xi, t) \gamma^5 \frac{\Delta^+}{2M} \right] \\ &\text{spin} \qquad \boxed{\text{N no flip} \text{ N flip}} \end{split}$$

spin	N no flip	N flip
q no flip	Н	Е
q flip	Ĥ	Ê

N(p)

3-D Imaging conjointly in transverse impact parameter and longitudinal momentum

GPDs and Transverse Imaging

 (x_B, t) correlations

$$q_X(x,\vec{b}_{\perp}) = \int \frac{\mathrm{d}^2 \vec{\Delta}_{\perp}}{(2\pi)^2} \left[H(x,0,t) - \frac{E(x,0,t)}{2M} \frac{\partial}{\partial b_y} \right] \mathrm{e}^{-i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}}$$

GPDs and Energy Momentum Tensor

(x,ξ) correlations

Form Factors accessed via second x-moments :

$$\langle p' | \hat{T}^{q}_{\mu\nu} | p \rangle = \bar{N}(p') \left[\frac{M_{2}^{q}(t)}{M} \frac{P_{\mu}P_{\nu}}{M} + J^{q}(t) \frac{i(P_{\mu}\sigma_{\nu\rho}+P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + d_{1}^{q}(t) \frac{\Delta_{\mu}\Delta_{\nu}-g_{\mu\nu}\Delta^{2}}{5M} \right] N(p)$$

0

Angular momentum distribution

Deeply Virtual Compton Scattering

The cleanest GPD probe at low and medium energies

Global Fits to extract the D-term

Beam Spin Asymmetries

$$Im \mathcal{H}(\xi, t) = \frac{r}{1+x} \left(\frac{2\xi}{1+\xi}\right)^{-\alpha(t)} \left(\frac{1-\xi}{1+\xi}\right)^{b} \left(\frac{1-\xi}{1+\xi}\frac{t}{M^{2}}\right)^{-1}$$

Unpolarized cross-sections Use dispersion relation:

$$\operatorname{Re}\mathcal{H}(\xi,t) = D + \mathcal{P}\int \mathrm{d}x \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right)\operatorname{Im}\mathcal{H}(\xi,t)$$

pure Bethe-Heitler local fit + uncertainty range resulting global fit

D-term Extraction

$$D^{q}(\frac{x}{\xi},t) = \left(1 - \frac{x^{2}}{\xi^{2}}\right) \left[d_{1}^{q}(t)C_{1}^{3/2}(\frac{x}{\xi}) + d_{3}^{q}(t)C_{3}^{3/2}(\frac{x}{\xi}) + \cdots\right]$$

t-dependence of the D-term :

Dipole gives singular pressure at r = 0Quadrupole implied by counting rules? Exponential?

 $d_1(0) < 0$ dynamical stability of bound state $d_1(0) = -2.04 \pm 0.14 \pm 0.33$ First Measurement of new fundamental quantity

. . .

Proton Pressure distribution results

The pressure at the core of the proton is $\sim 10^{35}$ Pa About 10 times the pressure at the core of a neutron star

Positive pressure in the core (repulsive force) Negative pressure at the periphery: pion cloud Pressure node around $r \approx 0.6$ fm

Stability condition : $\int_{0}^{\infty} dt r^2 p(r) = 0$

Rooted into Chiral Symmetry Breaking

World data fit CLAS 6 GeV data Projected CLAS12 data E12-16-010B

V. Burkert, L. Elouadrhiri, F.X. G., Nature 557 (2018) 396

CLAS12 Deep Exclusive Scattering Program

Preliminary Results at DNP2020

Kubarovsky	3D Nucleon Structure and Deeply Virtual Meson Production	DQ 00005
Diehl	$N{\rightarrow}N^*$ transition GPD measurements with CLAS12 at JLab	FQ 00002
Clary	Exclusive ϕ Meson Electroproduction with CLAS12	FQ 00007
Lee	DVCS Cross Section Measurements with CLAS12	RL 00002
Elouadrhiri	First Determination of the Shear Forces Inside the Proton	RL 00006
Price	Measuring DVCS on the Neutron with CLAS12 at JLab	SL 00001
Tan	DVCS at Multi-Energy Polarized Electron Beam with CLAS12	SL 00003
Christiaens	DVCS on Proton with CLAS12	SL 00004
Johnston	$DV\pi^0$ Production Cross Section at CLAS12	SL 00006
Kim	$DV\pi^0$ Production with CLAS12 at Jefferson Lab	SL 00008

DVCS with a Polarized Positron beam

PEPPo production injecting 60 MeV 100 nA positron polarized at 60%

(PEPPo Collaboration) D. Abbott et al. , PRL116 (2016) 214801 ; L. Cardman et al. AIP CP 1970 (2018) 050001 Proposal 100 days (80+20) at $\mathcal{L}=0.6\times10^{35}~cm^{-2}s^{-1}$

Impact of the CLAS12 Positron data

Global analysis of CLAS12 program observables { $\sigma_{UU}, A_{LU}, A_{UL}, A_{UL}, A_{UU}^{C}, A_{LU}^{C}$ }

unpolarized beam charge asymmetry A_{UU}^{C} sensitive to the amplitude real part polarized beam charge asymmetry A_{UU}^{C} sensitive to the amplitude imaginary part

Improvement of the statistical and systematical uncertainties

Model independent separation of the Interference with BH and DVCS²

Outlook: EIC proton DVCS Observables

	$\int \mathcal{L}$	Observables	A _{e,p}		
unpolarized	200 fb ⁻¹	σ	A _{LU}		
L polarized	$100 \ {\rm fb}^{-1}$	A _{UL}	A _{LL}		
T polarized	$100 \ {\rm fb}^{-1}$	A _{UTx}	AUTy	A_{LTx}	A _{LTy}
e ⁺	$100 {\rm ~fb^{-1}}$	AC	ACLU		

$$N_{\text{events}} = \int \mathcal{L} \times \sigma \times \text{KPS}$$
$$\text{KPS} = \Delta x_B \Delta Q^2 \Delta t \Delta \phi$$

$$rac{\Delta\sigma}{\sigma} = rac{1}{\sqrt{\mathsf{N}_{\mathsf{events}}}} \oplus 5\%$$

$$\begin{split} \Delta A_{LU} &= \frac{1}{P_e} \sqrt{\frac{1 - P_e^2 A_{LU}^2}{N}} \oplus 3\%_{\text{relative}} \quad P_e = 70\% \\ \Delta A_{UL} &= \frac{1}{P_p} \sqrt{\frac{1 - P_p^2 A_{UL}^2}{N}} \oplus 3\%_{\text{relative}} \quad P_p = 70\% \\ \Delta A_{LL} &= \frac{1}{P_e P_p} \sqrt{\frac{1 - P_e^2 P_p^2 A_{LL}^2}{N}} \oplus 3\%_{\text{relative}} \oplus 3\%_{\text{relative}} \\ \Delta A_C &= \sqrt{\frac{1 - A_C^2}{N}} \oplus 3\%_{\text{relative}} \\ \Delta A_{LC} &= \frac{1}{P_e +} \sqrt{\frac{1 - P_e^2 A_{LC}^2}{N}} \oplus 3\%_{\text{relative}} \quad P_e^+ = 70\% \end{split}$$

EIC 275 GeV \times 18 GeV

$$Q^2 = 329 \pm 175 \,\, {
m GeV}^2$$

Not shown here: $A_{LL} A_{LTx} A_{LTy}$ are small Smearing both statistics and systematics

Locally extracted H CFF at EIC

Nucleon Mechanical Structure from JLab to EIC

- CLAS12 Entering the precision era in the valence region
- Many preliminary results presented at this meeting
- Positron beam crucial for model independent extraction
- Natural extension of the program at EIC to map out the sea and gluons
- Mechanical structure: new insights into confinement dynamics

