Mechanical properties of the nucleon with the CLAS12

F.-X. Girod
GW University / UConn

Oct $30^{\text {th }} 2020$

Diffraction and Imaging

Huygens-Kirchhoff-Fresnel principle

$\vec{q}=\vec{k}-\overrightarrow{k^{\prime}}$
The interference pattern is given by the superposition of spherical wavelets

$$
f\left(\Omega_{\vec{q}}\right)=\int \frac{\mathrm{d}^{3} \vec{r}}{(2 \pi)^{3}} F(\vec{r}) \mathrm{e}^{i \vec{q} \cdot \vec{r}}
$$

Fourier imaging

Interference pattern

Carbon nanotube imaging

Elastic scattering

Form Factors

Probing deeper using virtual photons

$$
\begin{aligned}
& \\
& \frac{J_{\mathrm{EM}}^{\mu}}{}=F_{1} \gamma^{\mu}+\frac{\kappa}{2 M} F_{2} i \sigma^{\mu \nu} q_{\nu} \\
& \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\sigma_{\mathrm{Mott}}}{\epsilon(1+\tau)}\left[\tau G_{\mathrm{M}}^{2}+\epsilon G_{\mathrm{E}}^{2}\right] \\
& \tau=\frac{Q^{2}}{4 M^{2}} \\
& Q^{2}=-\left(k-k^{\prime}\right)^{2}=-m_{\gamma^{*}}^{2} \\
& \frac{1}{\epsilon}=1+2(1+\tau) \tan ^{2} \frac{\theta_{e}}{2} \\
& G_{\mathrm{E}}=F_{1}-\tau F_{2} \\
& G_{\mathrm{M}}=F_{1}+F_{2}
\end{aligned}
$$

Hofstadter Nobel prize 1961
"The best fit in this figure indicates an rms radius close to $0.74 \pm 0.24 \times 10^{-13} \mathrm{~cm}$." Imaging in transverse impact parameter space

Deeply Inelastic Scattering

Parton Distributions

The total cross section is given by the imaginary part of the forward amplitude

$$
\nu=E_{\gamma^{*}} \quad, \quad x_{B}=\frac{Q^{2}}{2 M \nu}
$$

$\sigma_{\mathrm{DIS}}\left(x_{B}, \mathscr{Q}^{2}\right) \rightarrow$ scaling, point-like constituents

Discovery of quarks, SLAC-MIT group, $7-18 \mathrm{GeV}$ electron ${ }^{{ }^{2}}$
Friedman, Kendall, Taylor, Nobel prize 1990

$$
\lim _{Q^{2} \rightarrow \infty} \sigma_{\mathrm{DIS}}\left(x_{B}\right)=\int_{x_{B}}^{1} \frac{\mathrm{~d} \xi}{\xi} \sum_{a} f_{a}(\xi, \mu) \hat{\sigma}^{a}\left(\frac{x_{B}}{\xi}, \frac{Q}{\mu}\right)
$$

1-D distribution in longitudinal momentum space

Deep Exclusive Scattering

Generalized Parton Distributions

$$
\begin{aligned}
& \frac{P^{+}}{2 \pi} \int \mathrm{~d} y^{-} \mathrm{e}^{i x P^{+} y^{-}}\left\langle p^{\prime}\right| \bar{\psi}_{q}(0) \gamma^{+}\left(1+\gamma^{5}\right) \psi(y)|p\rangle \\
& =\bar{N}\left(p^{\prime}\right)\left[H^{q}(x, \xi, t) \gamma^{+}+E^{q}(x, \xi, t) i \sigma^{+\nu} \frac{\Delta_{\nu}}{2 M}\right. \\
& \left.\quad+\tilde{H}^{q}(x, \xi, t) \gamma^{+} \gamma^{5}+\tilde{E}^{q}(x, \xi, t) \gamma^{5} \frac{\Delta^{+}}{2 M}\right] N(p)
\end{aligned}
$$

spin	N no flip	N flip
q no flip	H	E
q flip	\tilde{H}	\tilde{E}

3-D Imaging conjointly in transverse impact parameter and longitudinal momentum

GPDs and Transverse Imaging

$\left(x_{B}, t\right)$ correlations

$$
q_{x}\left(x, \vec{b}_{\perp}\right)=\int \frac{\mathrm{d}^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}}\left[H(x, 0, t)-\frac{E(x, 0, t)}{2 M} \frac{\partial}{\partial b_{y}}\right] \mathrm{e}^{-i \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}}
$$

Target polarization

Flavor dipole

Lattice calculation

GPDs and Energy Momentum Tensor

(x, ξ) correlations
Form Factors accessed via second x -moments :

$$
\left\langle p^{\prime}\right| \hat{T}_{\mu \nu}^{q}|p\rangle=\bar{N}\left(p^{\prime}\right)\left[M_{2}^{q}(t) \frac{P_{\mu} P_{\nu}}{M}+J^{q}(t) \frac{2\left(P_{\mu} \sigma_{\nu \rho}+P_{\nu} \sigma_{\mu \rho}\right) \Delta^{\rho}}{2 M}+d_{1}^{q}(t) \frac{\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}}{5 M}\right] N(p)
$$

Angular momentum distribution

$$
\begin{aligned}
& J^{q}(t)=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} x x\left[H^{q}(x, \xi, t)+E^{q}(x, \xi, t)\right] \quad \begin{array}{c}
\text { Distribution of pressure } \\
\mathbf{r}^{2} \mathbf{p}(\mathbf{r}) \text { in } \mathbf{G e V} \mathbf{f m}^{-\mathbf{1}}
\end{array}
\end{aligned}
$$

Mass and force/pressure distributions

$$
\begin{gathered}
M_{2}^{q}(t)+\frac{4}{5} d_{1}(t) \xi^{2}=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} x x H^{q}(x, \xi, t) \\
d_{1}(t)=15 M \int d^{3} \vec{r} \frac{j_{0}(r \sqrt{-t})}{2 t} p(r)
\end{gathered}
$$

Deeply Virtual Compton Scattering

The cleanest GPD probe at low and medium energies

Diehl, Gousset, Pire, Ralston (1997) Belitsky, Müller, Kirchner $(2002,2010)$

$$
\begin{aligned}
A_{\mathrm{LU}} & =\frac{d^{4} \sigma^{\rightarrow}-d^{4} \sigma^{\leftarrow}}{d^{4} \sigma^{\rightarrow}+d^{4} \sigma^{\leftarrow}} \stackrel{\text { twist-2 }}{\approx} \frac{\alpha \sin \phi}{1+\beta \cos \phi} \\
\alpha & \propto \operatorname{Im}\left(F_{1} \mathcal{H}+\xi G_{M} \tilde{\mathcal{H}}-\frac{t}{4 M^{2}} F_{2} \mathcal{E}\right) \\
\mathcal{H}(\xi, t) & =i \pi H(\xi, \xi, t)+\mathcal{P} \int_{-1}^{1} \mathrm{~d} x \frac{H(x, \xi, t)}{x-\xi} \\
A_{\mathrm{UL}} & \propto \operatorname{Im}\left(F_{1} \tilde{\mathcal{H}}+\xi G_{M} \mathcal{H}+G_{M} \frac{\xi}{1+\xi} \mathcal{E}+\cdots\right) \sin \phi
\end{aligned}
$$

Global Fits to extract the D-term

Beam Spin Asymmetries
$\operatorname{Im} \mathcal{H}(\xi, t)=\frac{r}{1+x}\left(\frac{2 \xi}{1+\xi}\right)^{-\alpha(t)}\left(\frac{1-\xi}{1+\xi}\right)^{b}\left(\frac{1-\xi}{1+\xi} \frac{t}{M^{2}}\right)^{-1}$

Unpolarized cross-sections
Use dispersion relation:
$\operatorname{Re} \mathcal{H}(\xi, t)=D+\mathcal{P} \int \mathrm{d} x\left(\frac{1}{\xi-x}-\frac{1}{\xi+x}\right) \operatorname{Im} \mathcal{H}(\xi, t)$
pure Bethe-Heitler
local fit + uncertainty range
resulting global fit

D-term Extraction

$$
D^{q}\left(\frac{x}{\xi}, t\right)=\left(1-\frac{x^{2}}{\xi^{2}}\right)\left[d_{1}^{q}(t) C_{1}^{3 / 2}\left(\frac{x}{\xi}\right)+d_{3}^{q}(t) C_{3}^{3 / 2}\left(\frac{x}{\xi}\right)+\cdots\right]
$$

t-dependence of the D-term :

Dipole gives singular pressure at $r=0$
Quadrupole implied by counting rules?
Exponential?
$d_{1}(0)<0$ dynamical stability of bound state

$$
d_{1}(0)=-2.04 \pm 0.14 \pm 0.33
$$

First Measurement of new fundamental quantity

Proton Pressure distribution results

The pressure at the core of the proton is $\sim 10^{35} \mathrm{~Pa}$ About 10 times the pressure at the core of a neutron star

Positive pressure in the core (repulsive force) Negative pressure at the periphery: pion cloud Pressure node around $r \approx 0.6 \mathrm{fm}$

Stability condition : $\int_{0}^{\infty} \mathrm{d} t r^{2} p(r)=0$

Rooted into Chiral Symmetry Breaking

World data fit
CLAS 6 GeV data
Projected CLAS12 data E12-16-010B
V. Burkert, L. Elouadrhiri, F.X. G., Nature 557 (2018) 396

CLAS12 Deep Exclusive Scattering Program

Preliminary Results at DNP2020

Kubarovsky
Diehl
Clary
Lee
Elouadrhiri
Price
Tan
Christiaens
Johnston Kim

3D Nucleon Structure and Deeply Virtual Meson Production
DQ 00005
$\mathrm{N} \rightarrow \mathrm{N}^{*}$ transition GPD measurements with CLAS12 at JLab Exclusive ϕ Meson Electroproduction with CLAS12
DVCS Cross Section Measurements with CLAS12
First Determination of the Shear Forces Inside the Proton
Measuring DVCS on the Neutron with CLAS12 at JLab
DVCS at Multi-Energy Polarized Electron Beam with CLAS12
DVCS on Proton with CLAS12
DV π^{0} Production Cross Section at CLAS12
DV π^{0} Production with CLAS12 at Jefferson Lab

FQ 00002
FQ 00007
RL 00002
RL 00006
SL 00001
SL 00003
SL 00004
SL 00006
SL 00008

CLAS12 10.6 GeV DVCS Coverage

DVCS with a Polarized Positron beam

PEPPo production injecting 60 MeV 100 nA positron polarized at 60%
(PEPPo Collaboration) D. Abbott et al. , PRL116 (2016) 214801 ; L. Cardman et al. AIP CP 1970 (2018) 050001 Proposal 100 days $(80+20)$ at $\mathcal{L}=0.6 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Impact of the CLAS12 Positron data

Global analysis of CLAS12 program observables $\left\{\sigma_{U U}, \mathrm{~A}_{\mathrm{LU}}, \mathrm{A}_{\mathrm{UL}}, \mathrm{A}_{\mathrm{LL}}, \mathrm{A}_{\mathrm{UU}}^{\mathrm{C}}, \mathrm{A}_{\mathrm{LU}}^{\mathrm{C}}\right\}$
unpolarized beam charge asymmetry $A_{U U}^{C}$ sensitive to the amplitude real part polarized beam charge asymmetry $\mathbf{A}_{\mathrm{UU}}^{\mathrm{C}}$ sensitive to the amplitude imaginary part

Fitting $\{\mathcal{H}, \tilde{\mathcal{H}}\}$ assuming model values for $\{\mathcal{E}, \tilde{\mathcal{E}}\}$

PARTONS Δ Re H without / with positrons

Improvement of the statistical and systematical uncertainties

Model independent separation of the Interference with BH and DVCS²

Outlook: EIC proton DVCS Observables

	$\int \mathcal{L}$	Observables	$\mathrm{A}_{\mathrm{e}, \mathrm{p}}$		
unpolarized	$200 \mathrm{fb}^{-1}$	σ	A_{LU}		
L polarized	$100 \mathrm{fb}^{-1}$	$\mathrm{~A}_{\mathrm{UL}}$	A_{LL}		
T polarized	$100 \mathrm{fb}^{-1}$	$\mathrm{~A}_{U \mathrm{~T}_{x}}$	$\mathrm{~A}_{U \mathrm{~T}_{y}}$	$\mathrm{~A}_{\mathrm{LT} \times}$	$\mathrm{A}_{\mathrm{LTy}}$
e^{+}	$100 \mathrm{fb}^{-1}$	$\mathrm{~A}^{\mathrm{C}}$	$\mathrm{A}_{\mathrm{LU}}^{\mathrm{C}}$		

$$
\mathrm{N}_{\text {events }}=\int \mathcal{L} \times \sigma \times \mathrm{KPS}
$$

$$
\mathrm{KPS}=\Delta x_{B} \Delta Q^{2} \Delta t \Delta \phi
$$

$$
\begin{aligned}
& \Delta \mathrm{A}_{\mathrm{LU}}=\frac{1}{\mathrm{P}_{\mathrm{e}}} \sqrt{\frac{1-\mathrm{P}_{\mathrm{e}}^{2} \mathrm{~A}_{\mathrm{LU}}^{2}}{N}} \oplus 3 \%_{\text {relative }} \quad \mathrm{P}_{\mathrm{e}}=70 \% \\
& \Delta \mathrm{~A}_{\mathrm{UL}}=\frac{1}{\mathrm{P}_{\mathrm{p}}} \sqrt{\frac{1-\mathrm{P}_{\mathrm{p}}^{2} \mathrm{~A}_{\mathrm{UL}}^{2}}{N}} \oplus 3 \%_{\text {relative }} \quad \mathrm{P}_{\mathrm{p}}=70 \% \\
& \Delta \mathrm{~A}_{\mathrm{LL}}=\frac{1}{\mathrm{P}_{\mathrm{e}} \mathrm{P}_{\mathrm{p}}} \sqrt{\frac{1-\mathrm{P}_{\mathrm{e}}^{2} \mathrm{P}_{\mathrm{p}}^{2} \mathrm{~A}_{\mathrm{LL}}^{2}}{N}} \oplus 3 \%_{\text {relative }} \oplus 3 \%_{\text {relative }} \\
& \Delta \mathrm{A}_{\mathrm{C}}=\sqrt{\frac{1-\mathrm{A}_{\mathrm{C}}^{2}}{N}} \oplus 3 \%_{\text {relative }}
\end{aligned}
$$

$$
\Delta \mathrm{A}_{\mathrm{LC}}=\frac{1}{\mathrm{P}_{e^{+}}} \sqrt{\frac{1-\mathrm{P}_{e^{+}}^{2} \mathrm{~A}_{\mathrm{LC}}^{2}}{N}} \oplus 3 \% \text { relative } \quad \mathrm{P}_{e^{+}}=70 \%
$$

EIC $275 \mathrm{GeV} \times 18 \mathrm{GeV}$

EIC $275 \mathrm{GeV} \times 18 \mathrm{GeV} \quad x_{B}=0.08 \pm 0.02 \quad Q^{2}=329 \pm 175 \mathrm{GeV}^{2}$

Not shown here: $A_{L L} A_{L T x} A_{\text {LTy }}$ are small Smearing both statistics and systematics

Locally extracted H CFF at EIC

ImH vs t

$\Delta \mathrm{ImH} / \mathrm{ImH}$

ReH vs t

$\Delta \mathrm{ReH} / \mathrm{ReH}$

Nucleon Mechanical Structure from JLab to EIC

Exciting times: Golden Age of Hadronic Physics

- CLAS12 Entering the precision era in the valence region
- Many preliminary results presented at this meeting
- Positron beam crucial for model independent extraction
- Natural extension of the program at EIC to map out the sea and gluons
- Mechanical structure: new insights into confinement dynamics

