Meson Spectroscopy at CLAS and CLAS12 An overview of selected results

Andrea Celentano CLAS Collaboration

INFN-Genova

Introduction

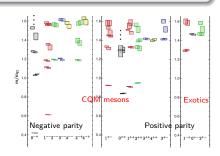
0000

- Introduction
- Meson spectroscopy at CLAS
- The MesonEx experiment
- 4 Hidden-charm pentaguark search
- Conclusions

Exotic mesons

QCD does not prohibit the existence of unconventional meson states such as hybrids $(q\overline{q}g)$, tetraquarks $(q\overline{q}q\overline{q})$, and glueballs.

regular meson tetraquark



Exotic quantum numbers: $J^{PC} \neq q\overline{q}$

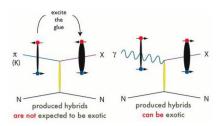
The discovery of states with manifest gluonic component, behind the CQM, would be the opportunity to directly "look" inside hadron dynamics. **Exotic quantum numbers** would provide an **unambiguous** evidence of these states.

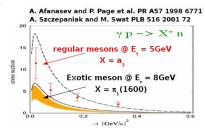
Lattice QCD calculations¹ provided a first hint on the spectrum and mass range of exotics.

Mass range: 1.4 GeV - 3.0 GeV Lightest exotic is a 1^{-+} state.

¹ J. J. Dudek et al, Phys. Rev. D82, 034508 (2010)

Exotic mesons photoproduction


Traditionally, meson spectroscopy was studied trough different experimental techniques: peripheral hadron production, $N\overline{N}$ annihilation, . . .


Photo-production measurements were limited by the lack of high-intensity, high-energy, high-quality photon beams.

Today, this limitation is no longer present.

Advantages:

- Photon spin: exotic quantum numbers are more likely produced by S=1 probe
- Linear polarization: acts like a filter to disentangle the production mechanisms and suppress backgrounds
- Production rate: for exotics is expected to be comparable as for regular meson

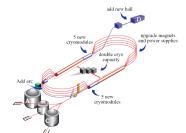
0000

Home of the Continuous Electron Beam Accelerator Facility (CEBAF)

Until 2012: 6-GeV e^- machine based on superconducting technology.

- 3 experimental Halls: A, B, C
- Max. current: $\simeq 200 \mu A$ / Hall (A and C)
- CW beam, $\simeq 100\%$ duty-cycle
- Beam polarization $\simeq 80\%$

Jefferson Laboratory


Introduction

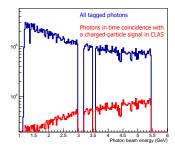
0000

Home of the Continuous Electron Beam Accelerator Facility (CEBAF)

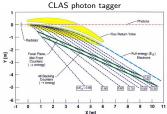
Today: 12-GeV e^- machine based on superconducting technology.

- 4 experimental Halls: A, B, C, D
- Multi-pass acceleration scheme, 2.2 GeV / pass
- Max. current: $\simeq 100 \mu \text{A}$ / Hall (A and C)
- CW beam, $\simeq 100\%$ duty-cycle
- Beam polarization $\simeq 80\%$

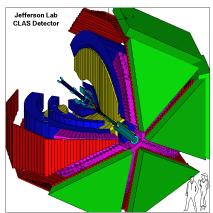
Hidden-charm pentaguark search


High-energy, high-statistics breammstrahlung photon-beam experiment on IH2 target

The g12 run period

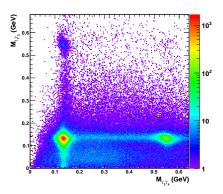

Introduction

- Summer 2008, $E_{e^-} = 5.715$ GeV, $I_{e^-} \simeq 60 \text{ nA}$
- Tagged Bremsstrahlung photon-beam: 0.3-5.4 GeV, $L_{rad} = 10^{-4} X_0$
- 40-cm long LH₂ target
- Total number of recorded events $\simeq 26 \cdot 10^8$

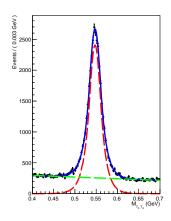


Hidden-charm pentaguark search

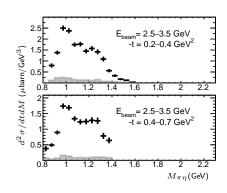
CLAS detector in Hall B at Jefferson Laboratory: almost 4π detector optimized for multi-particle final states


- Toroidal magnetic field (6 supercond. coils)
- Drift chambers (3 layers)
- Time-of-flight counters
- Electromagnetic calorimeters
 - $\sigma_E/E \simeq 10\%/\sqrt{E}$
 - Angular coverage: $5^{\circ} < \theta < 45^{\circ}$
- Charged particle performances:
 - Acceptance: $8^{\circ} < \theta < 142^{\circ}$
 - Resolution: $\delta p/p \simeq 1\%$, $\delta \theta < 1 \text{ mrad}$

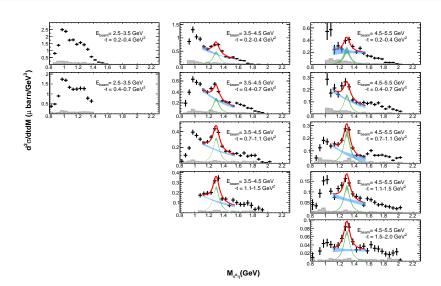
First measurement of the photoproduction reaction $\gamma p \to p a_2(1320)$


The $\gamma p\to p\pi^0\eta$ is a "golden channel" in meson spectroscopy: any P-wave resonance would unambiguously carry $J^{PC}=1^{-+}$ exotic quantum numbers. A first measurement of this reaction in the multi-GeV energy range was recently completed using data from CLAS-g12.

- Both mesons were identified via their two-photons decay. A 4C kinematic fit was applied to the reaction $\gamma p \to p 4 \gamma$ events to ensure exclusivity.
- The $_s\mathcal{P}lot$ technique was applied to isolate the reaction $\gamma p \to \pi^0 \eta p$, using the invariant mass of the two photons from the η as control variable.
- The differential cross section $d^2\sigma/dtdM_{\pi^0\eta}$ was extracted in different E_γ and -t kinematic


The $\gamma p \to p \pi^0 \eta$ is a "golden channel" in meson spectroscopy: any P-wave resonance would unambiguously carry $J^{PC}=1^{-+}$ exotic quantum numbers. A first measurement of this reaction in the multi-GeV energy range was recently completed using data from CLAS-g12.

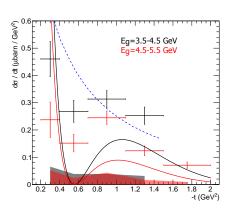
- Both mesons were identified via their two-photons decay. A 4C kinematic fit was applied to the reaction $\gamma p \to p 4 \gamma$ events to ensure exclusivity.
- The _sPlot technique was applied to isolate the reaction $\gamma p \to \pi^0 \eta p$, using the invariant mass of the two photons from the η as control variable.



The $\gamma p \to p \pi^0 \eta$ is a "golden channel" in meson spectroscopy: any P-wave resonance would unambiguously carry $J^{PC}=1^{-+}$ exotic quantum numbers. A first measurement of this reaction in the multi-GeV energy range was recently completed using data from CLAS-g12.

- Both mesons were identified via their two-photons decay. A 4C kinematic fit was applied to the reaction $\gamma p \to p 4 \gamma$ events to ensure exclusivity.
- The sPlot technique was applied to isolate the reaction $\gamma p \to \pi^0 \eta p$, using the invariant mass of the two photons from the η as control variable.
- The differential cross section $d^2\sigma/dtdM_{\pi^0n}$ was extracted in different E_{γ} and -t kinematic bins

First measurement of the photoproduction reaction $\gamma p \to p a_2(1320)$

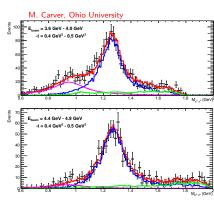


The limited statistics and acceptance prevented a full PWA of the final state. The dominant contribution of the $a_2(1320)$ to the total photo-production cross section was extracted in each E_γ and -t kinematic bin through a fit to the $d^2\sigma/dtdM_{\pi^0n}$ observable via a resonance (a_2) + background model.

Most peculiar cross-section feature: dip at $-t \simeq 0.55~{\rm GeV}^2$ for both beam energies. From Regge phenomenology, considering the dominant ρ and ω exchanges (Mathieu, PRD 102, 2020):

$$A_{a_2} \propto (1 + \tau e^{i\pi\alpha(t)})\Gamma(1 - \alpha(t))$$

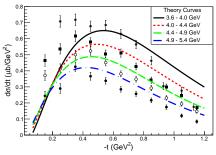
Our data also rule out other predictions for the $\gamma p \to p a_2$ photo-production cross section, based on other assumptions concerning the a_2 nature (for example, Xie et al. PRC 93, 2016)



$f_2(1270)$ photoproduction and decay via two π^0 channel

Exploiting the same $\gamma p \to p 4 \gamma$ CLAS-g12 dataset, a high-statistics measurement of the $f_2(1270)$ photoproduction cross section on the proton was performed, exploiting the $f_2 \to \pi^0 \pi^0$ neutral decay channel. This acts as a "PWA-filter": no P-wave signals (i.e. no background from ρ production).

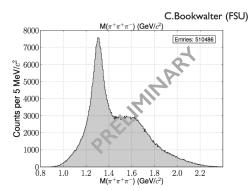
• In each E_{beam} and -t beam, the f_2 yield was extracted from the $M_{\pi\pi}$ spectrum, performing a template fit to the f_2 signal and to the background (phase-space $+ f_0$ tail)


Introduction

$f_2(1270)$ photoproduction and decay via two π^0 channel

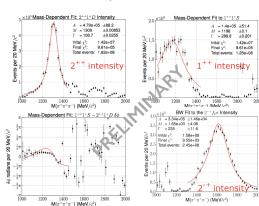
Exploiting the same $\gamma p \to p 4 \gamma$ CLAS-g12 dataset, a high-statistics measurement of the $f_2(1270)$ photoproduction cross section on the proton was performed, exploiting the $f_2 \to \pi^0 \pi^0$ neutral decay channel. This acts as a "PWA-filter": no P-wave signals (i.e. no background from ρ production).

- In each E_{beam} and -t beam, the f_2 yield was extracted from the $M_{\pi\pi}$ spectrum, performing a template fit to the f_2 signal and to the background (phase-space $+ f_0$ tail)
- The cross section was determined. from the measured f_2 yield. accounting for the CLAS acceptance/efficiency and for the luminosity.
- Results were compared with a prediction from a Regge-based model, finding a good agreement.

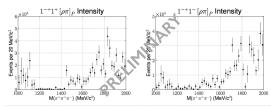

Parameter-free theory prediction, scaled by arbitrary factor 0.6 for comparison.

Full PWA of $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

Introduction


Reaction $\gamma p \to \pi^+\pi^+\pi^-(n)$ - neutron identified via missing mass technique. Focus on $E_\gamma > 4.4$ GeV to enhance meson resonances production.

- Clean 3π spectrum showing peaks of dominant resonances $a_2(1320)$ and $\pi_2(1670)$.
- Full PWA (17 waves): first time observation of a₁(1260) in photoproduction.
- No signal of $\pi_1(1600)$ photoproduction.


Reaction $\gamma p \to \pi^+\pi^+\pi^-(n)$ - neutron identified via missing mass technique. Focus on $E_\gamma > 4.4$ GeV to enhance meson resonances production.

- Clean 3π spectrum showing peaks of dominant resonances $a_2(1320)$ and $\pi_2(1670)$.
- Full PWA (17 waves): first time observation of $a_1(1260)$ in photoproduction.
- No signal of $\pi_1(1600)$ photoproduction.

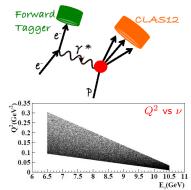
Reaction $\gamma p \to \pi^+\pi^+\pi^-(n)$ - neutron identified via missing mass technique. Focus on $E_\gamma > 4.4$ GeV to enhance meson resonances production.

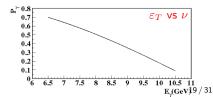
- Clean 3π spectrum showing peaks of dominant resonances $a_2(1320)$ and $\pi_2(1670)$.
- Full PWA (17 waves): first time observation of $a_1(1260)$ in photoproduction.
- No signal of $\pi_1(1600)$ photoproduction.

From C. Bookwalter (FSU) PhD thesis. Full paper (A. Tsaris et al) submitted to PRL.

MesonEx (E12-12-005) in Hall-B at Jefferson Laboratory

Meson Spectroscopy program with quasi-real photons: low Q^2 electron scattering on a hydrogen target.


Goals:


- Measure the light-quarks mesons spectrum in the mass range 1.0 3.0 GeV
- Determine masses and properties of rare q\(\overline{q}\) states
- Search for exotic mesons

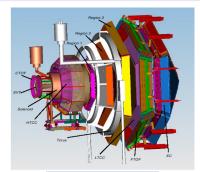
Low Q^2 electron scattering:

- Provides a high-flux of high-energy, linearly polarized, quasi-real photons.
- Complementary and competitive to real photo-production
- Virtual photon kinematics and polarization determined event-by-event measuring scattered electron variables

Experimental technique: coincidence measurement between CLAS12 (final state hadrons) and Forward Tagger facility (low-angle scattered electron)

CLAS12 / Forward tagger detectors

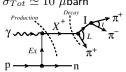
Introduction


CLAS12: multi-purpose, large acceptance, detector optimized for multi-particles final states (charged/neutrals)

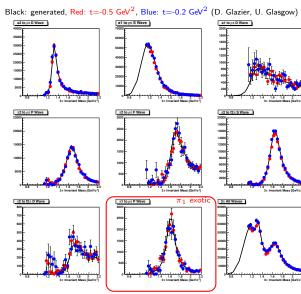

- Nominal luminosity: $\mathcal{L} = 10^{35} cm^{-2} s^{-1}$
- Charged particles tracking: toroidal magnet + drift chambers system
- Particle ID: TOF, Cerenkov, RICH
- Neutral particles: lead/plastic scintillator calorimeter

Forward tagger: forward spectrometer optimized for detection of e^{-} scattered at low angle.

- Lead-tungstate calorimeter (FT-Cal): measure scattered electrons energy $(\sigma_E \simeq \%)$
- Hodoscope (FT-Hodo): distinguish photons from electrons.
- Tracker (FT-Trck): determine the electron scattering plane.


Nominal acceptance: $2.5^{\circ} < \theta_e < 4.5^{\circ}$, $0.5 < E_e (GeV) < 4.5$

MesonEx: expected results. Benchmark reaction: $\gamma p \to n \pi^+ \pi^+ \pi^-$ MC study

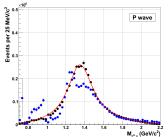

Isobar model for 3-pions production, $\sigma_{Tot} \simeq 10~\mu {\rm barn}$

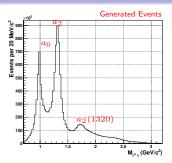
Meson spectroscopy at CLAS

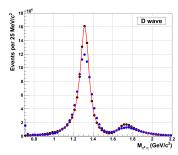
State	J^{PC}	L	Decay Mode
a_1 (1260)	1++	D	$\rho\pi$
a_2 (1320)	2++	D	$\rho\pi$
π_2 (1670)	2-+	Р	$\rho\pi$
π_2 (1670)	2-+	F	$\rho\pi$
π_2 (1670)	2-+	S	$f_2\pi$
π_2 (1670)	2-+	D	$f_2\pi$
π_1 (1600)	1-+	Р	$\rho\pi$

- 3π channel PWA feasible in MesonEx
- Sensitivity to $\pi_1(1600)$: $\sigma > 0.01\sigma_{Tot}$
- Leakage contribution to exotic waves from others: <1%

MesonEx: expected results. Benchmark reaction $\gamma p \to p \pi^0 \eta$ MC study


Ad-hoc model for reaction cross-section:

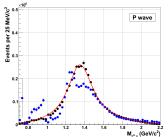

- Known resonances: $a_0(980)$, $a_2(1320)$, $a_2(1700)$
- Exotic contribution: $\pi_1(1400)$
- Large- $M_{\pi^0 n}$: double-Regge exchange

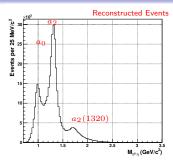

Results:

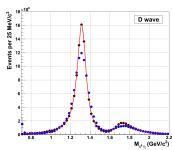
Introduction

- Non-exotic contributions properly reconstructed from PWA procedure
- Sensitivity to $\pi_1(1400)$ signal down to 5% of dominant $a_2(1320)$ signal

MesonEx: expected results. Benchmark reaction $\gamma p \to p \pi^0 \eta$ MC study

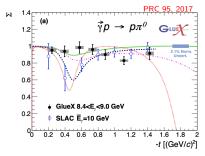

Ad-hoc model for reaction cross-section:

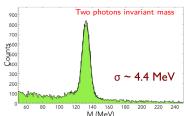

- Known resonances: $a_0(980)$, $a_2(1320)$, $a_2(1700)$
- Exotic contribution: $\pi_1(1400)$
- Large- $M_{\pi^0 n}$: double-Regge exchange


Results:

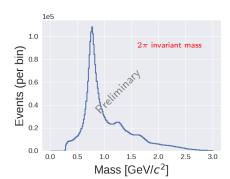
Introduction

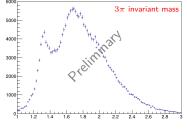
- Non-exotic contributions properly reconstructed from PWA procedure
- Sensitivity to $\pi_1(1400)$ signal down to 5% of dominant $a_2(1320)$ signal





Motivation: day-0 analysis, involving only the FT detector. This will allow to solve the SLAC/GlueX tension on Σ .


- Reaction: $ep \rightarrow e'\pi^0(p)$: measure e' and two photons in FT, reconstruct proton via missing mass. $E_e=10.6~\text{GeV}$
- Observables: Σ , $d\sigma/dt$ (also vs Q^2), σ_{TL} (not available in photoproduction.
- Status: analysis in progress exploiting the full CLAS12 RG-A 2018/2019 dataset (L. Biondo, Messina U.).





Day-1 analysis, core MesonEx program. All analysis are currently "work-in-progress".

- 2π analysis (A. Thornton, Glasgow U.): $ep \rightarrow e'\pi^+\pi^-(p)$
- 3π analysis (R. Wishart, Glasgow U.): $ep \rightarrow e'\pi^+\pi^+\pi^-(n)$
- 2K analysis (M. Nicol, York U.): $ep \rightarrow e'pK^+K^-(p)$

LHCB hidden-charm pentaguark

LHCb in 2015 announced² the discovery of two exotic structures in the J/ψ - p channel: $P_c(4380)$ and $P_c(4450)$, by measuring the

decay $\Lambda_b^0 \to pJ/\psi K^-$.

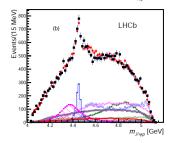
They claimed that the minimum quark content is $c\bar{c}uud$.

Widths:

Introduction

• $P_c(4450)$: $\Gamma = 39 \text{ MeV}$

• P_c (4380): $\Gamma = 205 \text{ MeV}$


Quantum numbers (PWA most probable solution)

• $P_c(4450)$: $J_P = \frac{5}{2}^-$

• $P_c(4380)$: $J_p = \frac{3}{2}^+$

Altough: "Acceptable solutions are also found for additional cases with opposite parity"

data LHCh P.(4450) P_c(4380) ×-- Λ(1690) $\Lambda(1820)$ -- A(1830) - A(1890) -- A(2100) m_{Kn} [GeV]

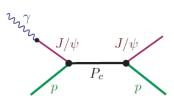
²Phys. Rev. Lett. **115**, 072001 (2015)

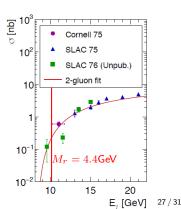
Hidden-charm pentaquark photo-production

A p- J/ψ resonance would apper as an s-channel resonance in the direct photo-production reaction: $\gamma p \to p J/\psi$. $M_R = \sqrt{s} = M^2 + 2 E_\gamma M$ $M_R \simeq 4.4 \ {\rm GeV} \to E_\gamma \simeq 10.1 \ {\rm GeV}$

"Naive" cross-section estimate ingredients³:

- Breit-Wigner elastic cross-section
- Vector Meson Dominance


$$\sigma(W) = \frac{2J+1}{4} \frac{4\pi}{k_{\cdot}^2} \frac{B_{in} B_{out} \Gamma^2 / 4}{(W - M_R)^2 + \Gamma^4 / 4}$$

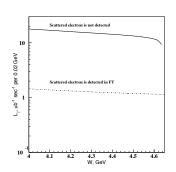

Vector Meson Dominance:

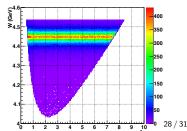
$$B_{in} = (e/f_V)^2 B_{out} (k_{in}/k_{out})^{2L+1}$$

Cross-section estimate:

$$P_c(4380): 1.5~\mu{
m barn} < \sigma_0/(B_{out}^2) <$$
 50 $\mu{
m barn}$ $P_c(4450): 12~\mu{
m barn} < \sigma_0/(B_{out}^2) <$ 360 $\mu{
m barn}$

³M. Karliner and J.L. Rosnerbz, arXiv:1508.01496

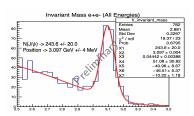

Use CLAS12 + Forward tagger detector for $p-J/\psi$ quasi-real photo-production with two complementary techniques:

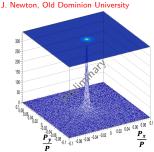

Untagged photo-production

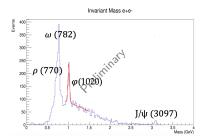
- Scattered electron at $\theta_e \simeq 0^\circ$ not detected
- Measure final state p and e^+e^- from J/ψ decay with CLAS12
- Higher luminosity, lower W resolution.

Tagged photo-production

- Scattered electron detected in Forward Tagger, $2.5^{\circ} < \theta_e < 4.5^{\circ}$
- Measure in coincidence final state p and/or and e^+e^- from J/ψ decay with CLAS12
- p- J/ψ invariant mass W measured as missing mass on scattered e^- in Forward Tagger
- Lower luminosity, higher W resolution.

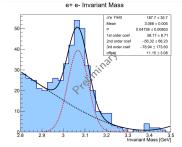





Reaction: $ep \to pe^+e^-(e')$ - scattered e' at $\theta \simeq 0^\circ$, undetected.

• Selection cuts based on transverse

- missing momentum, Q^2 , and missing mass. Optimal cut values determined using a boosted decision tree-based ML method.
- Clear evidence for light vector mesons production (ρ, ω, φ) - will be used as reference to check normalization and validate results.
- J/ψ signal is well visible: \simeq 240 exclusive events (full RG-A data)


Reaction: $ep \to pe^+e^-(e')$ - scattered e' at $\theta \simeq 0^\circ$, undetected.

- Selection cuts based on transverse missing momentum, Q^2 , and missing mass. Optimal cut values determined using a boosted decision tree-based ML method.
- · Clear evidence for light vector mesons production (ρ, ω, ϕ) - will be used as reference to check normalization and validate results.
- J/ψ signal is well visible: \simeq 240 exclusive events (full RG-A data)

Other on-going analysis exploiting the $\mu^+\mu^-$ channel and the e^+e^- channel on deuteron.

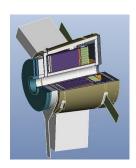
R. Tyson, Glasgow U.

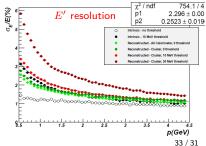
Conclusions

Introduction

- Experimental investigation of "exotic" hadrons is a powerful technique to answer to fundamental questions in QCD:
 - What is the origin of color confinement?
 - What is the role of gluons inside hadrons?
- Photoproduction is a very valuable technique to produce exotic mesons: unique role of fixed-target, high-acceptance, medium-energy experiments.
- CLAS at 6 GeV performed a first set of photo-production measurements recent results from neutral channels (a_2, f_2) , full PWA of 3π final state submitted for publication.
- CLAS12 MesonEx program: low- Q^2 electroproduction as a source of a high-intensity quasi-real photon beam. Starting from simple π^0 exclusive production, moving forward to multi-particle final states.

Backup slides


The Forward Tagger Facility

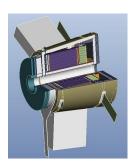

3 components:

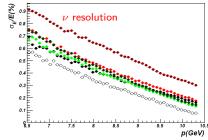
- Lead-tungstate calorimeter (FT-Cal): measure the energy of scattered electrons with few % resolution.
- Hodoscope (FT-Hodo): distinguish photons from electrons.
- Tracker (FT-Trck): determine the electron scattering plane.

Nominal design parameters:

	Range			
$E_{e'}$	0.5 - 4.5 GeV			
$\theta_{e'}$	2.5° - 4.5°			
$\phi_{e'}$	0° - 360°			
E_{γ}	6.5 - 10.5 GeV			
P_{γ}	70 - 10 %			
Q^2	$0.01 - 0.3 \text{ GeV}^2 \ (< Q^2 > 0.1 \text{ GeV}^2)$			
W	3.6 - 4.5 GeV			

34 / 31


The Forward Tagger Facility


3 components:

- Lead-tungstate calorimeter (FT-Cal): measure the energy of scattered electrons with few % resolution.
- Hodoscope (FT-Hodo): distinguish photons from electrons.
- Tracker (FT-Trck): determine the electron scattering plane.

Nominal design parameters:

	Range			
$E_{e'}$	0.5 - 4.5 GeV			
$\theta_{e'}$	2.5° - 4.5°			
$\phi_{e'}$	0° - 360°			
E_{γ}	6.5 - 10.5 GeV			
P_{γ}	70 - 10 %			
Q^2	$0.01 - 0.3 \text{ GeV}^2 \ (< Q^2 > 0.1 \text{ GeV}^2)$			
W	3.6 - 4.5 GeV			

