International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy (PWA 12 / ATHOS 7)

Baryon Spectroscopy with CLAS and CLAS12 Annalisa D'Angelo

University of Rome Tor Vergata & INFN Rome Tor Vergata Rome – Italy

For the CLAS Collaboration

Outline:

- Establishing N* states
- Identifying the effective degrees of freedom
- Results on photo-and electro-production
- Hybrid baryons signature
- Outlook & conclusions

Strong QCD is born ~ 1µsec after the Big Bang

N* Program – photo- & electro-production of mesons

The N* program is one of the key physics foundations of CLAS@JLab, A2@MAMI and CB@ELSA

Jefferson

Detectors have been designed to measure cross sections and spin observables over a broad kinematic range for exclusive reaction channels:

πN, ωN, φN, ηN, η'N, ππN, KY, K*Y, KY*

- N* parameters do not depend on how they decay
- Different final states have different hadronic decay parameters and different backgrounds
- Agreement offers model-independent support for findings
- The program goal is to probe the *spectrum* of N* states and their *structure*
 - Probe the underlying degrees of freedom of the nucleon through studies of photoproduction and the Q² evolution of the electro-production amplitudes.

N* degrees of freedom??

Establishing the N* and Δ Spectrum

QCD

N*, Δ*

LQCD

DSE,

LFQM

Experimental requirements:

- Precision measurements of photo-induced processes in wide kinematics, e.g. $\gamma p \rightarrow \pi N$, ηp , KY, ..., $\gamma n \rightarrow \pi N$, $K^0 Y^0$, ...
- More complex reactions, e.g. $\gamma p \rightarrow \omega p$, $p \phi$, $\pi \pi p$, $\eta \pi N$, K*Y, ... may be sensitive to high mass states through direct transition to ground state or through cascade decays
- Reaction Theory Amplitude Polarization observables are essential Dispersion analysis Relations Engaging theoretical groups meson Data N*,∆* Extract s-channel resonances Hadronic Electromagnetic & Ν baryon production production Jeff

Polarization Observables: Complete Experiment

The holy grail of baryon resonance analysis

- Process described by 4 complex, parity conserving amplitudes
- 8 well-chosen measurements are needed to determine amplitude.

3001

- Up to 16 observables measured directly
- 3 inferred from double polarization observables
- 13 inferred from triple polarization observables

(P^{γ})	Target (P^T)		Recoil (P^R)		Target (P^T) + Recoil (P^R)								
			x'	y' z'	x'	x'	x'	y'	y'	y'	z'	z'	z'
	x y	z			x	\boldsymbol{y}	z	x	\boldsymbol{y}	z	x	\boldsymbol{y}	z
arized $d\sigma_0$	Í	ŕ		\hat{P}	$\hat{T}_{x'}$		$\hat{L}_{x'}$		$\hat{\Sigma}$		$\hat{T}_{z'}$		$\hat{L}_{z'}$
$(2\phi_{\gamma})$	\hat{H}	\hat{G}	$\hat{O}_{x'}$	$\hat{O}_{z'}$		$\hat{\mathbf{C}}_{\mathbf{z}'}$		$\hat{\mathbf{E}}$		Ê		$-\hat{\mathbf{C}}_{\mathbf{x}'}$	
$(2\phi_{\gamma})$ $-\hat{\Sigma}$		- <u>P</u>		$-\hat{T}$	$- \hat{\mathbf{L}}_{\mathbf{z}'}$		$\hat{\mathbf{T}}_{\mathbf{z}'}$		$-d\sigma_0$		$\hat{\mathbf{L}}_{\mathbf{x}'}$		$-\hat{T}_{\mathbf{x}'}$
ar P_c^{γ}	\hat{F}	$-\hat{E}$	$\hat{C}_{x'}$	$\hat{C}_{z'}$		$-\hat{O}_{\mathbf{z}'}$		Ĝ		$-\hat{\mathbf{H}}$		$\hat{O}_{\mathbf{x}'}$	
ar P_c^{γ}	Ê	$-\hat{E}$	Ĉ _{x'} A. Sa	$\hat{C}_{z'}$ andorfi, S.	Hoblit	—Ô _{z′} ;, Н. Ка	aman	Ĝ IO, T	S.H.		−Ĥ Lee, J	–Ĥ Lee, J.Phy	−Ĥ Ô _{x'} Lee, J.Phys. 38 (2)

More N* from polarized K⁺ Λ photoproduction?

Jefferson Lab

New Multipole Extraction

PRC96,055202 (2017)

Evidence for New N* in KY

State N(mass)J ^P	PDG pre 2010	PDG 2020	КΛ	ΚΣ	Νγ	Νπ	
N(1710)1/2+	* * *	****	**	*	****	* * * *	
N(1880)1/2+		***	**	*	**	*	
N(2100)1/2+	*	***	*		**	***	
N(1895)1/2 ⁻		****	**	**	****	*	
N(1900)3/2+	**	****	**	**	****	**	Naming scheme has
N(1875)3/2 ⁻		***	*	*	**	**	changed:
N(2120)3/2 ⁻		***	**	*	***	**	L _{2 2J} (E) → J ^P (E)
N(2060)5/2 ⁻		***	*	*	***	**	
∆ (1600)3/2 ⁺	***	****			****	***	
∆ (1900)1/2 ⁻	**	***		**	***	***	
∆ (2200)7/2 ⁻	*	***		**	**	***	

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Measure more polarization observables, study these states in electroproduction and extend to higher masses

Do New States Fit into LQCD Projections ?

ab QCD @ Work, June 25 2018 - Annalisa D'Angelo – Light Baryons Spectrum and Structure at CLAS

Jefferson

Beam-target asymmetries $\vec{\gamma} \vec{p} \rightarrow p \omega$

Jefferson Lab

P. Roy et al. (CLAS), Phys.Rev. Lett. 122 (2019) 162301

Both PWA need newly discovered nucleon resonances: N(1880)1/2⁺, N(1895)1/2⁻, N(1875)3/2⁻, N(2120)3/2⁻. Also strong evidence is found for N(2000)5/2⁺ (previously also seen in unpolarized CLAS ω data)

10

Search for Neutron States: $\vec{\gamma n} \rightarrow K^+ \Sigma^-$

Search for Neutron States: $\gamma n \rightarrow \pi^- p$

$\pi^+\pi^-$ photoproduction – polarized p target

$\pi^+\pi^-$ photoproduction – polarized p target

Preliminary results by: A. Filippi (g14 data-set)

Electroexcitation of N*/Δ resonances

Total cross section at W < 2.1 GeV

$\pi^+\pi^-$ p CLAS data - Newly Discovered N'(1720)3/2⁺

Evidence of a new N'(1720)3/2⁺ resonance from the combined analysis of CLAS photo- and electroproduction of the π⁺π⁻p channel

17

First result on Q² evolution of new resonance electrocoupling

Jefferson Lab

Roper - 1st nucleon radial excitation?

V.B., C. Roberts, Rev.Mod.Phys. 91 (2019) no.1, 011003

LF RQM: I. Aznauryan, V.B. arXiv:1603.06692 DSE: J. Segovia, C.D. Roberts et al., PRC94 (2016) 042201 EFT: T. Bauer, S. Scherer, L. Tiator, PRC90 (2014) 015201

→ Non-quark contributions are significant at $Q^2 < 2.0 \text{ GeV}^2$. The behavior at $Q^2 < 0.5$ can be modeled in EFT.

→ The 1st radial excitation of the q³ core emerges as the probe penetrates the MB cloud

"Nature" of the Roper – is consistent with the 1st radial excitation of its quark core surrounded by a meson-baryon "cloud".

MB Contribution to electro-excitation of N(1535)1/2⁻

N(1535)1/2⁻ is consistent with the 1st orbital excitation of the nucleon.

19

Meson-baryon cloud may account for discrepancies at low Q².

MB Contribution to electro-excitation of N(1675)5/2⁻

- Measures the meson-baryon contribution to the $\gamma^* p \ N(1675)5/2^2$ directly.
- Can be verified on γ^* n N(1675)5/2⁻ which is not suppressed

Jeffe

E. Santopinto and M. M. Giannini, PRC 86, 065202 (2012)

• – • B. Juliá-Díaz, T.-S.H. Lee, et al., PRC 77, 045205 (2008)

Hybrid Baryons: Baryons with Explicit Gluonic Degrees of Freedom

- **Hybrid hadrons** with dominant gluonic contributions are predicted to exist by QCD. **Experimentally:**
- Hybrid mesons |qqg> states may have exotic quantum numbers J^{PC} not available to pure |qq> states
 GlueX, MesonEx, COMPASS, PANDA
- Hybrid baryons |qqqg> have the same quantum numbers J^P as |qqq> electroproduction with CLAS12 (Hall B).
- **Theoretical predictions:**
 - ♦ MIT bag model T. Barnes and F. Close, Phys. Lett. 123B, 89 (1983).
 - ♦ QCD Sum Rule L. Kisslinger and Z. Li, Phys. Rev. D 51, R5986 (1995).
 - ♦ Flux Tube model S. Capstick and P. R. Page, Phys. Rev. C 66, 065204 (2002).
 - ♦ LQCD J.J. Dudek and R.G. Edwards, PRD85, 054016 (2012).

Hybrid Baryons in LQCD

Hybrid states have same J^P values as qqq baryons. How to identify them?

- Overpopulation of N 1/2⁺ and N 3/2⁺ states compared to QM projections.
- $A_{1/2}$ ($A_{3/2}$) and $S_{1/2}$ show different Q² evolution.

Jefferson Lab

22

Separating q³g from q³ states ?

CLAS results on electrocouplings clarified nature of the Roper. Will CLAS12 data be able to identify gluonic contributions ?

For hybrid "Roper", $A_{1/2}(Q^2)$ drops off faster with Q^2 and $S_{1/2}(Q^2) \sim 0$.

23

Jefferson Lab

CLAS12 K⁺ electroproduction data

1.6 GeV < W < 3 GeV

4 M total K Λ events already collected

24

CLAS12 KY electro-production Cross Section Measurements

CLAS12 KY electro-production Cross Section Measurements

Baryon Spectroscopy Status Today

- Major progress made in the last years in the search for N* and ∆ states. All states can be accommodated in CQM and LQCD schemes.
 ▶ Polarization observables in photo-production have provided crucial constraints
- Knowledge of Q²-dependence of electro-couplings is absolutely necessary to understand the nature (the internal structure) of the excited states.
 - Roper IS the first radial excitation of the q³ core, obscured at large distances by meson-cloud effects.
 - Leading electrocoupling amplitudes of prominent low-mass states (e.g. N(1535)1/2⁻) is well modeled by DSE/QCD, LC SR and LF RQM for Q²> 2 GeV.
- Search for hybrid baryons with explicit gluonic degrees of freedom would be possible investigating the low Q² evolution of high-mass resonance (2-3 GeV) electrocoupligs:

> Looking for suppressed $A^{1/2}$, $A^{3/2}$, $S^{1/2}$ at low Q^{2} .

Upcoming results from CLAS12 will play a key role: stay tuned!