Hunting Dibaryons: A study of the $\gamma d \rightarrow \pi^{+}\pi^{-}d$ reaction

Taya Chetry Mississippi State University

> Ken Hicks Ohio University

GHP Meeting 14 April 2021

- Dibaryon: Particle with baryon number B = 2.
- Composed of six valence quarks
 - Six quarks in a bag.
- Theoretically expected and long sought resonances.

Dibaryon	Ι	J	BB configuration	Mass formula	Predicted Mass [MeV]				
D_{01}	0	1	deuteron	Α	1876				
D_{10}	1	0	NN virtual state	Α	1876				
D_{12}	1	2	$N\Delta$	A + 6B	2160				
D_{21}	2	1	$N\Delta$	A + 6B	2160				
D_{03}	0	3	ΔΔ	A + 10B	2350				
D_{30}	3	0	ΔΔ	A + 10B	2350				
Freeman J. Dyson and Nguyen-Huu Xuong Phys. Rev. Lett. 13, 815 – Published 28 December 1964									

Introduction

- Dyson-Xuong mass formula:
 - $-M_{N\Delta} \approx 2160 \text{ MeV}$
 - $-M_{\Delta\Delta} \approx 2350 \text{ MeV}$
- A. Gal, H Garcilazo, "3-body model calculations of N Δ and ΔΔ dibaryon resonances" Nuclear Physics A 928 (2014) 73-88
- H. Clement, "On the History of Dibaryons and their Final Observation", Progress in Particle and Nuclear Physics 93 (2017) 195-242

- The WASA@COSY result for ΔΔ by studying: pn→dπ⁰π⁰
- M ~ 2370 MeV, Γ ~ 70 MeV
- I(J^P) = O(3⁺) : Fact arrived from the reaction is purely isoscalar.
 - P. Adlarson, et al., Phys. Lett. B 721 (2013) 229
 P. Adlarson, et al., Phys. Rev. C 88 (2013) 055208
 P. Adlarson, et al., Phys. Lett. B 743 (2015) 325
 P. Adlarson, et al., Phys. Rev. Lett. 112 (2014) 202301
 P. Adlarson, et al., Phys. Rev. C 90 (2014) 035204

pp Elastic Scattering

Motivation

- Partial Wave Analysis.
- ${}^{1}D_{2}$ wave in pp elastic scattering: structure at 2148 - *i* 63 MeV.
- Prominent "resonance pole" seen in the SAID analysis.
- The total partial wave strength is consistent with the sum of its parts

Follow K. Hicks' talk for more motivation Hadronic Interactions I

4

Goal

Hunting Dibaryons

Investigate N Δ using $d\pi\pi$ in the final state.

- dπ+ channel → d^{*++}
- dπ⁰ channel → d^{*+}
- $d\pi$ channel d^{*o}

Verify the resonance and extract the differential cross section.

CLAS @ JLab

Detector

- Photons on deuteron target
- Spin:
 - $1 + 1 \rightarrow J = \{0, 1, 2\}$
- Isospin:
 - $\{0, 1\} + 1 \rightarrow \{0, 1\}$
- Coherent production removes complicated partial waves for nucleon mixtures.

Event Selection

- Final state particles detected: two charged pions and a coherent deuteron.
- Particle identification is done based on momentum-dependent timing analysis.

Hunting Dibaryons

T. Chetry, Mississippi State University

Cuts Applied

- Timing cuts made using momentumdependent analysis
 - One "good photon", $|\Delta t| < 1$ ns
- -37 cm < **z**_{vertex}< -13 cm
- Fiducial cuts applied
 - Minimum Theta Cut
- Minimum Momentum Cuts
- $-0.01 < MM^2(\pi^+\pi^-d) < 0.005 [GeV^2]$
- Bad SC Paddles removed.

Particle	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6
π^+	23, 27		11, 13, 23, 31	23, 33, 35	23, 29	23
	≥ 43	≥ 45	≥ 40	≥ 46	≥ 46	≥ 45
π^{-}	23, 27		11, 15, 16, 23, 31	23, 27, 35	20, 23, 29	23
	≥ 41	≥ 41	$34-36, \ge 41$	≥ 43	≥ 43	≥ 42
d	23, 27	23	11, 22, 23, 31	23	23, 29	23
	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35

- Tagger energy corrections
- Momentum corrections

What we see?

Hunting dibaryons

- dπ⁺ mass distribution.
- Basic cuts applied.
- Structure at about 2150 MeV.

Hunting Dibaryons

T. Chetry, Mississippi State University

What we see?

- dπ⁻ mass distribution.
- Basic cuts applied.

Hunting dibaryons

- Structure at about 2150 MeV.
- dπ⁻ distribution has prominent peak than dπ⁺ mass distribution.

Hunting Dibaryons

counts

T. Chetry, Mississippi State University

GHP Meeting 2021

Binning

4 CM bins and 5 |t| bins are considered

Hunting Dibaryons

T. Chetry, Mississippi State University

......

Backgrounds

γ $\pi^ \pi^+$ d (N_A)

d

- Major Backgrounds:
 - Phase Space: $d\pi + \pi$ -
 - Rho meson: π + π -
 - Reflection: $d\pi + / d\pi$ -
 - Assuming no other background.
- MC Generated for each case.

Acceptance

T. Chetry, Mississippi State University

Hunting Dibaryons

Yield Extraction

 γ π^{-} π^{+} d d

- Template fitting of all projections using simulation of signal and major backgrounds.
- Extract yield for the peak.

-
$$Y = N_{signal} = f_{signal} \times N_{data}$$

- $\sigma_Y = \sqrt{\left(\frac{\sigma_{f_{signal}}}{f_{signal}}\right)^2 + \frac{1}{N_{data}}}$

• Extracted the signal for both channels separately.

Differential Cross Section

Hunting Dibaryons

T. Chetry, Mississippi State University

Why is one channel favored than the other?

- Just from the Clebsch-Gordan coefficients, the amplitudes of the N∆ resonances have opposite signs.
- For Δ^{++} and Δ^{+} (left diagrams): $\sqrt{(3/4)} \sqrt{(1/12)} = +0.577$
- For Δ^0 and Δ^- (right diagrams): $-\sqrt{(3/4)} + \sqrt{(1/12)} = -0.577$
- Deuteron asymmetry (?)
- If *d*^{*} resonance cancels in one channel, it should add up in the other.

Courtesy: M. Sargsian, FIU

- Resonance peaks seen: three charge states are possible using the same detection sample.
- Template fitting procedure using reconstructed sample of signal and major backgrounds.
- Preliminary diff. cross section of two channels are presented.
- The probability of d^{*++} production is an order of magnitude different than that of $d^{*0} \rightarrow$ Calls for theory interpretation.

Thank you for your attention!

Extras

What we see?

Hunting dibaryons

0.9 1 1. MM(γ d, d')

1 1.1 1.2 1.3 1.4

1.5

- dπ⁰ mass distribution.
- Basic cuts applied.
- Structure at about 2150 MeV.
- Will investigate this channel later!

Plot Description

The 2D histogram is made after basic cuts are applied to the data. Plot on the left is the y-projection of the 2D histogram. It is the

mass distribution for the π^0 and the outgoing d.

Plot on the right is the x-projection of the 2D histogram. It is the mass distribution for $\pi^+ \pi^- \pi^0$ or the ω -meson distribution.

Hunting Dibaryons

T. Chetry, Mississippi State University

0.8

8.5

0.6 0.7