Accessing Spin-Dependent Fragmentation with SIDIS Dihadron Beam Spin Asymmetries at CLAS12

Christopher Dilks

For the CLAS Collaboration

APS GHP Workshop, April 2021

Research supported by the

Office of Science

- Spin-momentum and spin-spin correlations in hadronization
- Complement single-hadron SIDIS, with the advantage of another degree of freedom

Dihadron FF expands on a basis of spherical harmonics

Angular momentum eigenvalues | &, m >

Explore dihadron fragmentation depending on relative angular momentum

Dihadron FF expands on a basis of spherical harmonics

Angular momentum eigenvalues | &, m >

s Explore dihadron fragmentation depending on relative angular momentum

Dihadron FF expands on a basis of spherical harmonics

- Angular momentum eigenvalues | &, m >
- Explore dihadron fragmentation depending on relative angular momentum

• Matevosyan, Kotzinian, Thomas, Phys.Rev.Lett. 120 (2018) 25, 252001

• Gliske, Bacchetta, Radici, Phys.Rev.D 90 (2014) 11, 114027, Phys.Rev.D 91 (2015) 1, 019902 (erratum)

Hayward, CD, Vossen, Avakian, et al., Phys.Rev.Lett. 126 (2021) 15, 152501

3

 $G^{\perp|\ell,m\rangle}_{1}$ $A_{LU} \sim f_1 G_1^{\perp \mid \ell, m \rangle}$ h1

Matevosyan, Kotzinian, Thomas, Phys.Rev.Lett. 120 (2018) 25, 252001

• Gliske, Bacchetta, Radici, Phys.Rev.D 90 (2014) 11, 114027, Phys.Rev.D 91 (2015) 1, 019902 (erratum)

<u>Twist 3</u>

• Bacchetta, Radici, Phys.Rev.D 69 (2004) 074026

• Gliske, Bacchetta, Radici, Phys.Rev.D 90 (2014) 11, 114027, Phys.Rev.D 91 (2015) 1, 019902 (erratum)

Bacchetta, Radici, Phys.Rev.D 69 (2004) 074026

Twist 3

• Gliske, Bacchetta, Radici, Phys.Rev.D 90 (2014) 11, 114027, Phys.Rev.D 91 (2015) 1, 019902 (erratum)

Dihadron Fragmentation Functions

Quark Polarization

 \mathbf{T} h_1h_2/q \mathbf{U} \mathbf{L} $H_{1,OO}^{\perp}$ UU $D_{1,OO}$ UL $H_{1,OL}^{\perp}$ $D_{1,OL}$ LL $H_{1,LL}^{\perp}$ $D_{1,LL}$ $\quad \text{if} \ m < 0 \\$ $H_{1,OT}^{\perp}$ $G_{1,OT}^{\perp}$ UΤ $D_{1,OT}$ $H_{1,OT}^{\triangleleft}$ if m > 0 $\int H_{1,LT}^{\perp} \quad \text{if } m < 0$ $G_{1,LT}^{\perp}$ LT $D_{1,LT}$ $\begin{pmatrix} H_{1,LT}^{\triangleleft} & \text{if } m > 0 \end{cases}$ $H_{1,TT}^{\perp}$ if m < 0 $G_{1,TT}^{\perp}$ ТТ $D_{1,TT}$ $H_{1,TT}^{\triangleleft}$ if m > 0

Dihadron Interference

Dihadron Fragmentation Functions

Quark Polarization

 \mathbf{T} h_1h_2/q \mathbf{U} \mathbf{L} $H_{1,OO}^{\perp}$ UU $D_{1,00}$ UL $H_{1,OL}^{\perp}$ $D_{1,OL}$ LL $H_{1,LL}^{\perp}$ $D_{1,LL}$ Dihadron Interference $H_{1,OT}^{\perp}$ $\ {\rm if} \ m < 0 \\$ $G_{1,OT}^{\perp}$ UΤ $D_{1,OT}$ $H_{1,OT}^{\triangleleft}$ if m > 0 $H_{1,LT}^{\perp}$ if m < 0 $G_{1,LT}^{\perp}$ $D_{1,LT}$ LT $H_{1,LT}^{\triangleleft}$ if m > 0 $H_{1,TT}^{\perp}$ if m < 0 $G_{1,TT}^{\perp}$ ТТ $D_{1,TT}$ $H_{1,TT}^{\triangleleft}$ if m > 0Twist 2 A_{LU} Twist 3 A_{LU}

Dihadron Fragmentation Functions

$$e = 0$$
 $|0,0\rangle$
ss UU

7

$$G_1^{\perp,|\ell,0\rangle} = 0$$
$$G_1^{\perp,|\ell,m\rangle} = G_1^{\perp,|\ell,-m\rangle}$$

$$egin{array}{c|c} |1,1
angle\ G_{1,OT}^ot\ G_{1,LT}^ot\ G_{1,TT}^ot\ G_{1,TT}^ot$$

Twist 3

Twist 3

CLAS 12 Event Selection

Kinematics

CLAS 12

Forward Detector

- Torus Magnet
- Drift Chamber (DC)
- Forward Time of Flight (FTOF)
- High-threshold Cherenkov Counter (HTCC)
- Low-threshold Cherenkov Counter (LTCC)
- Ring Imaging Cherenkov Detector (RICH)
- Preshower + Electromagnetic Calorimeter (PCAL/EC)
- Forward Tagger (FT)

Longitudinally Polarized Electron Beam

- E = 10.6 GeV
- P = 86–89%
- Unpolarized Liquid H₂ Fixed Target
- Torus magnet \rightarrow electrons inbending

M_h distribution

M_h distribution

Multidimensional binning scheme in M_h

12

C. Dilks

C. Dilks

Asymmetry Measurements

 $\frac{\text{Twist 2}}{F_{LU,T}} \sim f_1 \otimes G_1^{\perp |\ell, m\rangle}$

$$G_1^{\perp |\ell, m\rangle} = 6 + \frac{h_1}{h_2} - 6 + \frac{h_1}{h_2}$$

Twist-2 A_{LU} Amplitudes

Twist-2 A_{LU} Amplitudes

z Bins in 3 M_h Regions

Twist-2 A_{LU} Amplitudes

p_{T} Bins in 3 M_{h} Regions

Twist-2 A_{LU} Amplitudes

Asymmetry Measurements

Twist 3

 $F_{LU} \sim e \otimes H_1^{\perp |\ell, m\rangle}$

Twist-3 A_{LU} Amplitudes

z Bins in 3 M_h Regions

Twist-3 A_{LU} Amplitudes

20

SIDIS dihadron beam spin asymmetries are sensitive to:

- Dihadron fragmentation function G_1^{\perp} and H_1
- Twist-3 parton distribution function e(x)

• Partial waves expansions provide:

- Dependence on dihadron polarizations
- Refined access to ${\sf G_1^{\perp}}$
- Better understanding of $H_1^{<}$
- Hints at nonzero H_1^{\perp}

Summary

backup

 ϕ_h

A_{LU} modulated by functions of 3 angles:

- Azimuthal angles
 - $\bullet \quad P_h = P_1 + P_2 \qquad \Longrightarrow \qquad$

 $q \times P_h$ plane dihadron plane A_{...} modulated by functions of 3 angles: **Azimuthal angles** 2R• $P_h = P_1 + P_2$ • • ϕ_h • $R = \frac{1}{2} \left(P_1 - P_2 \right) \implies \phi_R$ R_T scattering plane $\phi_{R_{\perp}}$ $arphi_h$

•

