Peter Pauli

Exotic meson program at JLab

2nd Strong2020 online workshop

Sep 15, 2021

Hybrid mesons

- * Many $q\bar{q}$ states have been observed
- * $q\bar{q}q\bar{q}, q\bar{q}g, \dots$ are not forbidden!
- * In quark model: $\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}, P = (-1)^{L+1}, C = (-1)^{L+S}$

 \rightarrow <u>not</u> allowed: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$

* "Exotic" quantum numbers are "smoking gun" for something not being pure $q\bar{q}$

Light quark mesons from lattice QCD

hadspec collaboration

hadspec, Phys. Rev. D 88, 094505

Hybrid mesons - evidence

- * Experimental evidence for a 1^{-+} :
 - * $\pi_1(1400)$: GAMS, VES, E852, CBAR, COMPASS
 - * $\pi_1(1600)$: VES, E852, COMPASS
- * JPAC coupled channel fit to $\eta\pi$ and $\eta'\pi$ data from COMPASS

CEBAF at Jefferson Lab

* Up to 12 GeV e^- beam

Hall B: CLAS12 Hall D: GlueX

CLAS12 in Hall B

- Solenoid and toroidal magnetic fields
- * Excellent PID for multi-particle FS
- Wide physics program
- Forward tagger: quasi-real photoproduction

- * Momentum resolution: dp/p < 1%
 - 4σ separation: π/K up to 2.8 GeV K/p up to 4.8 GeV π/p up to 5.4 GeV
- ♦ Quasi-real photon energies
 ≈ 5.5-9.5 GeV

MesonEx

- Quasi-real photo production on proton target with dedicated trigger
- Study light-quark mesons and search for exotics
- * Data taking started 2018, still ongoing
- * Early analysis goals:
 - beam asymmetries
 - diff. cross section
 - moment analysis
- * First results (beam asymmetries) expected early 2022

MesonEx - first look

N. Zachariou, Hadron 2021

GlueX experiment in Hall D

 tag electrons to determine photon energy produce linearly polarized photon beam via coherent bremsstrahlung on thin diamond

Acceptance:

 $\theta_{lab} \approx 1^{\circ} - 120^{\circ}$

- * Charged particles: $\sigma_p/p \approx 1\% 3\% (8\% 9\% \text{ very-forward high-momentum tracks})$
- Photons:

Towards hybrids at GlueX

- Photoproduction complementary to pion production
 - Utilize polarization to understand production mechanisms

- Study production mechanisms to inform choice of wave sets for PWA (beam asymmetries, spin density matrix elements)
- Reproduce previous results by COMPASS
- * Study $b_1 \rightarrow \omega \pi$ as first step towards $b_1 \pi$ PWA
- Work closely with theory colleagues

Spin density matrix elements

Μ

p

X

 $\mathbf{f} P_{\gamma}$

 π

- * SDMEs ρ_{jk}^{i} contain information on the spinpolarization of the produced state
- Measure angular distribution of decay products
- Learn about production mechanism
 - * Study the naturality $\eta = P(-1)^J$ of the exchanged particle X

For vector meson to pseudo-scalar decays:

 $W(\cos\theta, \phi, \Phi) = W^{0}(\cos\theta, \phi, \Phi) + P_{\gamma}\cos(2\Phi)W^{1}(\cos\theta, \phi, \Phi) + P_{\gamma}\sin(2\Phi)W^{2}(\cos\theta, \phi, \Phi)$ $W^{0}(\cos\theta, \phi) = \frac{3}{4\pi} \left(\frac{1}{2}(1 - \rho_{00}^{0}) + \frac{1}{2}(3\rho_{00}^{0} - 1)\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\theta\cos\phi - \rho_{1-1}^{0}\sin^{2}\theta\cos2\phi \right)$ $W^{1}(\cos\theta, \phi) = \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\theta + \rho_{00}^{1}\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\theta\cos\phi - \rho_{1-1}^{1}\sin^{2}\theta\cos2\phi \right)$ $W^{2}(\cos\theta, \phi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\theta\sin\phi + \rho_{1-1}^{2}\sin^{2}\theta\sin2\phi \right)$ Schilling et. al., Nucl. Phys. B 15 (1970) 397-412 11

A. Austregesilo

Hadron 2021

* Study combinations of SDMEs which are purely natural or unnatural

$$\rho_{jk}^{N,U} = \frac{1}{2} \left(\rho_{jk}^0 \mp (-1)^i \rho_{-jk}^1 \right)$$

Schilling et. al., Nucl. Phys. B 15 (1970) 397-412

Dominance of natural amplitudes

Natural: e.g. f_2 , a_2 Unnatural: e.g. π , η

Hybrid search in $\eta\pi$

* JPAC coupled channel fit to $\eta\pi$ and $\eta'\pi$ data from COMPASS

* GlueX has access to different decay modes in multiple final states

$$\begin{array}{ll} & \gamma p \to \eta \pi^{0} p, \, \eta \to \gamma \gamma & & \gamma p \to \eta \pi^{-} \Delta^{++}, \, \eta \to \pi^{+} \pi^{-} \pi^{0} \\ & & \gamma p \to \eta \pi^{0} p, \, \eta \to \pi^{+} \pi^{-} \pi^{0} & & \gamma p \to \eta' \pi^{0} p, \, \eta' \to \pi^{+} \pi^{-} \eta, \, \eta \to \gamma \gamma \\ & & \gamma p \to \eta \pi^{-} \Delta^{++}, \, \eta \to \gamma \gamma & & \\ & & 13 & & \gamma p \to \eta' \pi^{-} \Delta^{++}, \, \eta' \to \pi^{+} \pi^{-} \eta, \, \eta \to \gamma \gamma \end{array}$$

* a_2 predominantly D_2 wave, consistent with helicity=2 dominance at Belle ($\gamma \gamma \rightarrow \eta \pi^0$) 14 Belle, Phys. Rev. D 80, 032001 A. Schertz K. Suresh

- LQCD: $b_1\pi$ is dominating decay mode of 1⁻⁺ exotic *
- First step: study b_1 *

$$* \gamma p \to b_1 p \to \omega \pi^0 p \to \pi^+ \pi^- \pi^0 \pi^0 p$$

* $\gamma p \rightarrow b_1^- \Delta^{++} \rightarrow \omega \pi^- \Delta^{++} \rightarrow \pi^+ \pi^- \pi^0 \pi^- \pi^+ p$

 b_1 decay

Summary

- * JLab has a strong program dedicated to studying exotic mesons
- GlueX and CLAS12 collect unique data sets with unprecedented statistical precision
- Start with studying production mechanisms and moments and develop PWA in parallel
- Many interesting analyses in the pipeline

16