

Beam asymmetry of the photoproduction of the ω meson off bound protons in CLAS

Olga Cortés Becerra

NSTAR 2022
Santa Margherita Ligure
October 19 2022

BARYON SPECTROSCOPY

- Excited states of nucleons manifest in the cross sections as broad distributions: resonances.
 - Strong overlapping.
 - Sophisticated tools are needed to obtain

The baryon spectrum cannot be predicted by perturbation theory

Baryon resonances (N*s and Δ *s)

M. Pennington presentation

Polarization observables

UNPOLARIZED CROSS-SECTION

POLARIZATION OBSERVABLES.

Beam		Γ	arge	et	F	Reco	il			Γ	Targe	t + .	Reco	oil		
	_	_	_	_	x'	y'	z'	x'	x'	x'	y'	y'	y'	z'	z'	z'
	_	x	y	z	_	-	-	x	y	z	x	y	z	\boldsymbol{x}	y	z
unpolarized	σ_0		T			P		$T_{x'}$		$L_{x'}$		\sum		$T_{z'}$		$L_{z'}$
linearly pol.	Σ	H	P	G	$O_{x'}$	T	$O_{z'}$	$L_{z'}$	$C_{z'}$	$T_{z'}$	E	σ_0	F	$L_{x'}$	$C_{x'}$	$T_{x'}$
circularly pol.		F		E	$C_{x'}$		$C_{z'}$		$O_{z'}$		G		Н		$O_{x'}$	

Why ω ?

Photoproduction from the Proton

Courtesy of S. Schadmand

Particle	$\mid J^P \mid$	overall	PWA	$N\gamma$	$N\pi$	$\Delta\pi$	$N\sigma$	$N\eta$	ΛK	ΣK	N ho	$N\omega$	$N\eta'$
\overline{N}	$1/2^{+}$	****											
N(1440)	$1/2^{+}$	****	$\circ \diamond_q \star \triangleright$	****	****	****	***	_			_		
N(1520)	$3/2^{-}$	****	0	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	0 0 * >	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	0 0 * >	****	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	0 0 * >	****	****	****	***	*	*	*	_		
N(1680)	$5/2^{+}$	****	0 0 * >	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	0 D	**	***	***	*	*		_	_		
N(1710)	$1/2^{+}$	****	0 0 0	****	*** <mark>*</mark>	*_		***	**	*	*	*	
N(1720)	$3/2^{+}$	****	0 0 * >	****	****	***	*	*	****	*	*_	*	
N(1860)	$5/2^{+}$	**	\triangleright	*	**		*	*					
N(1875)	$3/2^{-}$	***	0 D	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^{+}$	***	0 D	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	0 D	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^{+}$	****	0 0 0	****	**	**	*	*	**	**	_	*	**
N(1990)	$7/2^{+}$	**	0 0 0	**	**			*	*	*			
N(2000)	$5/2^{+}$	**	0 *	**	*_	**	*	*	_	_		*	
N(2040)	$3/2^{+}$	*	\triangleright		*								
N(2060)	$5/2^{-}$	***	$\circ \diamond_q \rhd$	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^{+}$	***		**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	0 D	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	0 0 * >	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^{+}$	****	o	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	0 0 * >	**	****			*	*	*			
N(2300)	$1/2^{+}$	**			**								
N(2570)	$5/2^{-}$	**			**								
N(2600)	$11/2^{-}$	***	*		***								
N(2700)	$13/2^{+}$	**			**								

Particle	$\mid J^P \mid$	overall	PWA	$N\gamma$	$N\pi$	$\Delta\pi$	$N\sigma$	$N\eta$	ΛK	ΣK	N ho	$N\omega$	$N\eta'$
\overline{N}	$1/2^{+}$	****											
N(1440)	$1/2^{+}$	****	$ \circ \diamond_g \star \triangleright $	****	****	****	***	-			-		
N(1520)	$3/2^{-}$	****	0 0 * >	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	0 0 * >	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	0 0 * >	****	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	0 0 * >	****	****	****	***	*	*	*	_		
N(1680)	$5/2^{+}$	****	0 0 * >	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	0 D	**	***	***	*	*		_	_		
N(1710)	$1/2^{+}$	****	0 0 0	****	*** <mark>*</mark>	*_		***	**	*	*	*	
N(1720)	$3/2^{+}$	****	0 0 * >	****	****	***	*	*	****	*	*_	*	
N(1860)	$5/2^{+}$	**	\triangleright	*	**		*	*					
N(1875)	$3/2^{-}$	***	0 D	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^{+}$	***	0 D	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	0 >	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^{+}$	****	0 \$ >	****	**	**	*	*	**	**	_	*	**
N(1990)	$7/2^{+}$	**	0 \$ >	**	**			*	*	*			
N(2000)	$5/2^{+}$	**	0 *	**	*_	**	*	*	_	_		*	
N(2040)	$3/2^{+}$	*	\triangleright		*								
N(2060)	$5/2^{-}$	***	$\circ \diamond_g dota$	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^{+}$	***		**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	0 >	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	0 0 * >	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^{+}$	****	o	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	0 0 * >	**	****			*	*	*			
N(2300)	$1/2^{+}$	**			**								
N(2570)	$5/2^{-}$	**			**								
N(2600)	$11/2^{-}$	***	*		***								
N(2700)	$13/2^{+}$	**			**								
11 (2100)	10/2												

Particle	$\mid J^P \mid$	overall	PWA	$\mid N\gamma \mid$	$N\pi$	$\Delta\pi$	$N\sigma$	$N\eta$	ΛK	ΣK	N ho	$N\omega$	$N\eta'$
\overline{N}	$1/2^{+}$	****											
N(1440)	$1/2^{+}$	****	$ \circ \diamond_g \star \triangleright $	****	****	****	***	-			-		
N(1520)	$3/2^{-}$	****	0 0 * >	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	0 0 * >	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	0 0 * >	****	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	0 0 * >	****	****	****	***	*	*	*	-		
N(1680)	$5/2^{+}$	****	0 0 * >	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	0 >	**	***	***	*	*		_	_		
N(1710)	$1/2^{+}$	****	0 \$ >	****	****	*_		***	**	*	*	*	
N(1720)	$3/2^{+}$	****	0 0 * >	****	****	***	*	*	****	*	*_	*	
N(1860)	$5/2^{+}$	**		*	**		*	*					
N(1875)	$3/2^{-}$	***	0 >	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^{+}$	***	0 >	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	0 >	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^{+}$	****	0 \$ >	****	**	**	*	*	**	**	_	*	**
N(1990)	$7/2^{+}$	**	0 \$ >	**	**			*	*	*			
N(2000)	$5/2^{+}$	**	0 *	**	*_	**	*	*	_	_		*	
N(2040)	$3/2^{+}$	*			*								
N(2060)	$5/2^{-}$	***	$\mid \circ \diamond_g angle \mid$	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^{+}$	***	0 >	**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	0 >	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	0 0 * >	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^{+}$	****	0 0 *	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	0 0 * >	**	****			*	*	*			
N(2300)	$1/2^{+}$	**			**								
N(2570)	$5/2^{-}$	**			**								
N(2600)	$11/2^{-}$	***	*		***								
N(2700)	$13/2^{+}$	**			**								

Particle	J^P	overall	PWA	$N\gamma$	$N\pi$	$\Delta\pi$	$N\sigma$	$N\eta$	ΛK	ΣK	N ho	$N\omega$	$N\eta'$
\overline{N}	$1/2^{+}$	****											
N(1440)	$1/2^{+}$	****	$\circ \diamond_g \star \triangleright$	*** <mark>*</mark>	****	****	***	-			-		
N(1520)	$3/2^{-}$	****	0 ♦ ★ ▷	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	0 ♦ ★ ▷	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	0 ♦ ★ ▷	****	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	0 ♦ ★ ▷	****	****	****	***	*	*	*	_		
N(1680)	$5/2^{+}$	****	0 ♦ ★ ▷	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	0 0	**	***	***	*	*		_	_		
N(1710)	$1/2^{+}$	*** <mark>*</mark>	0 \$ >	*** <mark>*</mark>	***	*_		***	**	*	*	*	
N(1720)	$3/2^{+}$	****	0 \$ * D	***	****	***	*	*	****	*	*_	*	
N(1860)	$5/2^{+}$	**	\triangleright	*	**		*	*					
N(1875)	$3/2^{-}$	***	0 0	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^{+}$	***	0 0	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	0 0	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^{+}$	***	0 \$ >	****	**	**	*	*	**	**	_	*	**
N(1990)	$7/2^{+}$	**	0 \$ >	**	**			*	*	*			
N(2000)	$5/2^{+}$	**	o *	**	*_	**	*	*	_	_		*	
N(2040)	$3/2^{+}$	*	\triangleright		*								
N(2060)	$5/2^{-}$	***	$\circ \diamond_g dota$	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^{+}$	***		**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	0 D	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	0 0 * D	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^{+}$	****	o	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	0 0 * D	**	****			*	*	*			
N(2300)	$1/2^{+}$	**			**								
N(2570)	$5/2^{-}$	**			**								
N(2600)	$11/2^{-}$	***	*		***								
N(2700)	$13/2^{+}$	**			**								

Why studying photoproduction off the bound proton?

- We consider the neutron is on-shell while proton is off-shell.
- The higher the missing momentum is, more Final State Interactions (FSI) events will be present.
- What is the effect of the "off-shellness" of the nucleon in the observables?
- When the medium starts to affect the observables? (particularly important to interpret bound neutron data)

Figure credit: Andrew Sproles, Oak Ridge National laboratory

Courtesy A. Schimdt

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Courtesy A. Schimdt

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

- Real photon. $1.1 \le E_{\gamma} \le 2.3 \text{GeV}$
- Linearly polarized photons: Coherent Bremsstrahlung
- 40 cm deuterium target

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

$$\gamma d \to \omega \qquad p(n)$$

$$\omega \to \pi^+ \pi^- \quad \pi^0$$

$$\pi^0 \to \gamma \gamma$$

Charged particle identification

Charged particle identification

Neutral particle identification

Charged particle identification

Neutral particle identification

Incident photon identification

Charged particle identification

Neutral particle identification

Incident photon identification

Other cuts

$$\gamma d \to \omega \qquad p(n)$$

$$\omega \to \pi^+ \pi^- \quad \pi^0$$

$$\pi^0 \to \gamma^0$$

Beam Asymmetry

This work
Quasi free GRAAL (2015)
Free proton CLAS (2017)
Free Proton CLAS (2019)
Bonn-Gatchina (2016)

Systematic Uncertainties:

Source of uncertainty	$ \mu_{\Delta\Sigma} $
ϕ_0 offset	10^{-6}
Photon flux ratio	~ 0.001
Polarization ratio	< 1%
Mean polarization	5%
Neutral particle cut	0.017
Incident photon identification	0.001
Out of time cut	0.000
z-vertex cut	0.009
Missing momentum cut	0.021
Dilution factor and $3 - \sigma$ cut	0.010

Largest source of uncertainty

Conclusions

- The ω channel is relevant in the study of higher mass resonances.
- We calculated the Beam Spin asymmetry for the photoproduced ω mesons off the bounded proton in the deuteron for $E_\gamma=1.1-2.3$ GeV. (Higher Energies than previous CLAS data)
- **Comparison with previous quasi-free data from GRAAL collaboration (V. Vegna et al.) agrees at low energy bins. The amplitude of the asymmetry reported in this work is larger than GRAAL reported results at $E_{\gamma}=1.45$ GeV.
- *Our results, compared to the free proton events reported from CLAS collaboration (2017 and 2019) are in general smaller in amplitude for middle angle range.
- **Very useful discussion born in Santa Margherita. Ho trovato un paio di nuove idee a Portofino! Thank you!

Thank you!

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Questions?

Backup slides Handling Background

- The first approach is to take all the events in the background region and calculate the angular asymmetry Σ.
- The events selected where those with $M^2(\pi^+\pi^-\pi^0) \geq 3\sigma_i$ (where i denotes the ith bin in missing mass squared $M_X^2(\vec{\gamma}p \to p\pi^+\pi^-\pi^0X)$ and σ_i is the value of σ for a gaussian fit around the ω peak).
- A 2nd-degree polynomial fit is applied to these points.

Figure: Example for $E_{\gamma}=2.3~\text{GeV}$

Handling Background

- Asymmetry for the background region around zero.
- Dilution factor approach

$$F = \frac{\sum_{i} (A_{tot} - A_{bkg})_{i}}{\sum_{i} (A_{bkg})_{i}}$$

$$\left(\frac{dN}{d\phi}\right)_{signal}^{\parallel(\perp)} = F^{\parallel(\perp)} \left(\frac{dN}{d\phi}\right)_{peak}^{\parallel(\perp)}$$

signal
$$\rightarrow \mu_i - 3\sigma_i \le$$

 $M^2(\pi^+\pi^-\pi^0) \le \mu_i + 3\sigma_i$

 A_{peak} can be calculated integrating the model or integrating the histogram

$E_{\gamma}(GeV)$	DF _{HISTO}	DF_{FIT}^{\parallel}	DF [⊥] _{HISTO}	DF⊥
1.1-1.3	0.571	0.679	0.603	0.657
1.3-1.5	0.606	0.619	0.611	0.621
1.5-1.7	0.601	0.606	0.605	0.607
1.7-1.9	0.661	0.661	0.661	0.660
1.9-2.1	0.730	0.736	0.736	0.738
2.1-2.3	0.779	0.776	0.769	0.773

Systematic Uncertainties: related with event selection

Neutral particle identification

Photon identification cut

z-vertex

Systematic Uncertainties: related with event selection

 π^0 reconstruction 3σ cut - dilution factor

p missing cut

$$\frac{\left(\frac{dN}{d\phi}\right)^{\perp} - \left(\frac{dN}{d\phi}\right)^{\parallel}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{1 - F_R + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{1 + F_R + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)} \tag{1}$$

with the flux ratio $F_R = \frac{F^{\perp}}{F^{\parallel}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\bar{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector 1 . We fix all but one variable in the fit, Σ .

- P_R and \bar{P} are found using the polarization tables.
- Calculate F_R based on a fit over the (1) integrated over all the $\cos \theta$ bins.

$E_{\gamma}(GeV)$	P_R	P
1.1-1.3	0.88	0.754
1.3-1.5	1.01	0.782
1.5-1.7	0.96	0.750
1.7-1.9	0.94	0.676
1.9-2.1	0.99	0.730
2.1-2.3	1.02	0.695

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

$$\frac{\left(\frac{dN}{d\phi}\right)^{\perp} - \left(\frac{dN}{d\phi}\right)^{\parallel}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{1 - F_R + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{1 + F_R + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)} \tag{1}$$

with the flux ratio $F_R = \frac{F^{\perp}}{F^{\parallel}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\bar{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector 1 . We fix all but one variable in the fit, Σ .

- P_R and \bar{P} are found using the polarization tables.
- Calculate F_R based on a fit over the (1) integrated over all the $\cos \theta$ bins.

Figure: Example of fit for $1.7 < E_{\gamma} < 1.8$ GeV

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

$$\frac{\left(\frac{dN}{d\phi}\right)^{\perp} - \left(\frac{dN}{d\phi}\right)^{\parallel}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{1 - F_R + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{1 + F_R + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \sum \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)} \tag{1}$$

with the flux ratio $F_R = \frac{F^{\perp}}{F^{\parallel}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\bar{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector 1 . We fix all but one variable in the fit, Σ .

- P_R and \bar{P} are found using the polarization tables.
- Calculate F_R based on a fit over the (1) integrated over all the $\cos \theta$ bins.
- $\phi_0 = 0$ as suggested by large statistics channel study

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Hadron modeled as a ground state of "constituent quarks"

Fundamental quarks from the QCD Lagrangian

