A new way to study hadron production with nuclear DIS

Miguel Arratia

How does the nucleus react to a fast moving quark?

Quark transport in nuclei

Result of global analysis on hadron production with nuclear targets *Ru et al. PRD 103, 031901 (2021)*

Timescales of hadronization?

Fig. 7. – Sketch of the time evolution of the hadronisation process with definition of various time scales. A quark q created at time 0 in a hard collision turns into a coloured prehadron h_*^c , which subsequently neutralises its colour, h_*^0 , and collapses on the wave function of the observed hadron h. Gluon radiation lasts until colour neutralisation.

Figure from Acardi et al. Riv.Nuovo Cim. 32 (2009) 9-10, 439-554

Hadron formation times vs kinematics in Lund model

https://arxiv.org/abs/2202.12804

FIG. 1. Average formation times in the lab frame as a function of energy transfer ν for an intermediate $z = E_h/\nu = 0.6..0.8$ in three kinematical regimes for some hadrons.

CLAS and CLAS12 cover region where formation length is comparable to nuclear size

Lepton variables

Hadron variables

CLAS data: 5 GeV electron beam on nuclear targets

Single hadron production ratio:

$$R_h(\nu,Q^2,z,p_T^2) = \frac{N_h^A(\nu,Q^2,z,p_T^2)/N_e^A(\nu,Q^2)}{N_h^D(\nu,Q^2,z,p_T^2)/N_e^D(\nu,Q^2)}.$$

Single-hadron multiplicity ratio

High-precision, multidimensional charged-pion data

Negative pion too

What causes the excess of slow hadrons?

It has been long argued that this is "medium response"

What causes the excess of slow hadrons?

We must investigate simultaneously in energy and transverse momentum

Lepton variables

Hadron variables

Modification ratio differential in energy and transverse momentum

Moran et al. Phys. Rev. C 105, 015201, (2022)

- Excess at low energy and high pT
- Magnitude
 decreases with
 Increasing z, but
 then increases
 again at high z

Enter di-hadron angular correlations

Double hadron production ratio

HERMES measured this observable, which carries large discriminating power PRL 96:162301,2006

Double hadron production ratio

- Small A dependence
- Flat trend with z2
- Significant difference with HERMES reveals strong kinematic dependence

We can go beyond HERMES by measuring angular correlations

First-ever measurement of azimuthal correlation in eA

"Dipion quenching"

Broadening and suppression of correlation function in e-A DIS

Dependence on dipion transverse momentum and mass

Uptick at large values, weak dependence at small values. Similar to single hadron

Azimuthal & rapidity correlations

Azimuthal & rapidity correlations

CLAS12 set to bring an exciting future for nuclear DIS

- "Quark propagation and hadron formation experiment" with 11 GeV beam to run in near future
- 10 times more statistics.
- Larger kinematic range
- Better tracking, PID.
- Expect a decade worth of SIDIS studies in nuclear DIS with general purpose detector.
 A gateway to the EIC.
- We need new challenges...

Taking inspiration from HERMES charm upgrade (proposal circa ~97)

Muon detectors (RPCs) proposed Along with RICH to go after open charm production with various decay channels involving kaons, muons, e.g:

Table 2: Anticipated counts at 80 pb⁻¹. for RICH only

decay mode	N_{sig}	N_{back}	Significance	Total Significance
$\overline{\mathrm{D^0}} ightarrow \mathrm{K^+} \ \pi^-$	77	250	4.3σ	10 -
$\mathrm{D^0} ightarrow \mathrm{K^-} \; \pi^+$	27	110	2.3σ	4.8σ

Table 3: Anticipated counts at 80 pb⁻¹, for RICH + muon detection

decay modes	N_{sig}	N_{back}	Significance
$ \begin{array}{ c c c c c c } \hline D^0 \to K^+ \mu^- X \\ D^0 \to K^- \mu^+ X \end{array} $	267	3011	4.7σ

Some model predictions,

e.g CHARM PRODUCTION IN NN AND γN COLLISIONS

3 E_{γ} -dependence of the total cross section for photoproduction of charmed particles for model I. The curves correspond to different reactions: $\gamma + p \to \Lambda_c^+ + \overline{D}^0$ (solid line), $\gamma +$ $p \to \Sigma_{c_{-}}^{++} + D^{-}$ (dashed line), $\gamma + p \to$ $\Sigma_c^+ + \overline{D}^0$ (dotted line), $\gamma + n \to \Lambda_c^+ + D^-$ (dot-dashed line), $\gamma + n \rightarrow \Sigma_c^+ + D^-$ (thick solid line), $\gamma + n \rightarrow \Sigma_c^0 + \overline{D}^0$ (thick dashed line). The data correspond to the total charm photoproduction cross section (4 and refs. herein)

New muon detector for CLAS12 required to tag charm

We can do it effectively and cheaply with plastic bars, WLS fiber, and SiPMs

Summary

- Large acceptance, high statistics data from CLAS@JLab allow us to do novel studies in nuclear DIS with angular correlation techniques.
- First indications show interesting patterns, which might reveal interplay between struck quark/ leading hadron interactions and nuclear response.
- New MC generators (GiBUU, eHIJING, etc) will be crucial to interpret data and extract transport parameters, possibly hadronization timescales
- Future looks great with upcoming 11 GeV data and the future EIC

Backup

GiBUU calculations for CLAS 5 GeV data

Double-hadron vs single-hadron suppression factors

Dependence on dipion transverse momentum and mass

Uptick at large values, weak dependence at small values. Similar to single hadron

Geometrical effects within GiBUU model

Meanwhile, we can explore proton target data

- Correlations between struck quark and diquark remnant?
- Spin-observables being explored in CLAS12 revealing so-far-ignored phenomena

A glimpse into CLAS12 capabilities

Geometrical effects within GiBUU model

CLAS and CLAS12 coverage will complement and provide crucial baseline for future measurements at EIC

Cross-sections for open charm

