

Scaling Behaviour of Strangeness

Matthew Nicol

Hadron Spectroscopy

Normal meson

Pentaquark

Exotic states

Tetraquark

Hybrid meson

• Exploring possible structures

Why Scaling?

Scaling provides lots of information

Confirmation of models

• Predictive behaviour

I, Strakovsky. Et al. "Experimental tests of QCD scaling laws at large momentum transfer in exclusive light-meson photoproduction"

Strangeness

3&4° resonances in PDG			
Baryon	2004	2020	
N*	15	21	
Δ	10	12	
Λ	14	14	
Σ	10	9*	
Ξ	6	6	
Ω	2	2	

*Σ(2250) was downgraded

Discovery of kaon and lambda

Lack of hyperon discoveries (none in 20 years)

Strangeness

Strangeness Scaling

- Why strange production?
 - Strangeness enhanced for hybrids
 - proto-/neutro-phobic
 - Strange baryons are narrow -> easy to identify
 - Determine suppression of strangeness -> less production

• Strange exotic production enhancements -> help search

Experiment

Jefferson Laboratory

https://www.flickr.com/photos/jeffersonlab/

- 12 GeV e⁻ beam
- 4 experimental halls

Jefferson Laboratory

https://www.flickr.com/photos/jeffersonlab/

Resonant and non-resonant production

Resonant and non-resonant production

8

Resonant and non-resonant production

Current Results

Strangeness Suppresion 2:1

Smooth pattern

Levels off at higher momenta

Additional K⁺ suppresses by a factor of ~ 1/300

Strangeness Suppresion 3:2

Approaches same level as 2:1

Higher E_{γ} needed

Strange Exotic Production Non-resonant Deuteron -> 3 production modes Expect ratio of 3/2 Proton -> 2 production modes ν* η, π⁰, ρ⁰ π⁻, ρ Kр Ν Ν

Proton & neutron

Proton only

۲+

Strange Exotic Production Deck contribution

Deuteron -> 2 production modes Proton -> 1 production modes

Expect ratio of 2/1

Strangeness 1 d:p

Strangeness 2 d:p

Similar behaviour & scaling

Further studies will be performed

d_{sss} Upper Limit

Upper limit is 76 +/- 2 fb/GeV

Summary

First ever scaling behaviour for strangeness

Initial estimates at strangeness suppression factors -> 1/300

• Strange resonant production enhancements on deuteron

d_{sss} cross section upper limit

Additional Slides

Kaon Requirements UNIVERSITY 3 2.5 10³ P(K⁺) [GeV] 2 10² 1.5 10 0.5 K⁺ cut π⁺ cut 0 ^{0.8} ^{0.9} [GeV] 0.5 0.1 0.2 0.3 0.4 0.7 'n 0.6

Data

- RGA
- Fall2018
- dst
- Inbending
- 174 runs
- File Path:

Fall 2018 In: /cache/clas12/rg-a/production/recon/fall2018/torus-1/pass1/v0/dst/recon/ RGB Spring 2019 In: /cache/clas12/rg-b/production/recon/spring2019/torus-1/pass1/v0/dst/recon/

- RGB
- Spring2019
- dst
- Inbending
- 249 runs