

Search for Excited Cascade (E*-) Hyperons in the Reaction $ep \rightarrow e'K^+K^+K^-(\Lambda/\Sigma^0)$ Using CLAS12

Achyut Khanal (Advisors: Brian A. Raue and Lei Guo) Florida International University/CLAS Collaboration

Abstract

Doubly strange cascade hyperons are experimentally underexplored. The CLAS12 Very Strange physics program aims to study the electroproduction of these states. The reaction $ep \rightarrow e'K^+K^+K^-(\Lambda/M)$ Σ^{0}) is studied with an electron beam energy of 10.6 GeV using CLAS12 RG-A data. Scattered electrons are detected with either the Forward Detector (FD), covering a polar angle range of 5^o to 35^o to study electroproduction, or with the Forward Tagger (FT) covering a polar angle range of of 2.5° to 4.5° to study quasi-real photoproduction. The CLAS12 detector with nearly 4π solid angle coverage is used to detect charged kaons in the final state. Λ/Σ^0 hyperons are reconstructed using the missing mass technique to explore intermediate double strange hyperons (Ξ^{*-}) which decays to K^- and Λ/Σ^0 . No statistically significant Ξ^{*-} states other than Ξ^{*-} (1530) was found in the $e'K^+K^+$ missing mass spectra in the FD acceptance only. Upper limits on the production cross section for the reaction $ep \rightarrow e'K^+K^+E^{*-}$ (1820) is being investigated for low- Q^2 and high- Q^2 electroproduction processes.

Motivation Overall status $\Xi(1320)$ $\Xi(1530)$ *** *** $\Xi(1820)$ $\Xi(1950)$ **Lattice QCD calculation** $\Xi(2030)$ ***

- There are far fewer experimentally observed Cascade states than have been predicted.
- Validate SU(3) flavor symmetry of QCD.
- Advance QCD to understand the physics of the early universe.

Early Experiments on Ξ Search

- Used K^- beam on low sensitivity hydrogen bubble chamber.
- SPS charged hyperon beam at CERN studied \mathcal{E}^-N interaction.
- Kaon production using MPS at BNL claimed multiple Ξ states.
- CLAS6 photoproduction data showed $\mathcal{E}^{-}(1320)$ and $\mathcal{E}^{*-}(1530)$.

CLAS12 Spectrometer

Forward Detector: $(5^o \le \theta \le 35^o)$

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter (EC)

Central Detector:

 $(35^o \leq \theta \leq 125^o)$

- SOLENOID magnet • Barrel Silicon Tracker
- Central Time-of-Flight

Upgrades:

- Micromegas (CD)
- Neutron detector (CD)
- RICH detector (FD)

CLAS12 RG-A Experiment

- Electron beam: 10.6 GeV and 10.2 GeV longitudinally polarized electron beam from CEBAF.
- Beam Current: 5 nA to 75 nA.
- Target: 5 cm unpolarized liquid hydrogen (LH2) target.
- The Superconducting Torus and Solenoid Magnet for momentum
- Forward Tagger on to detect electrons and photons at a very forward polar angle of 2^o to 5^o .

Data Analysis Strategy

$$ep \rightarrow e'K^{+}K^{+}E^{*-}(1820)$$

 $E^{*-}(1820) \rightarrow K^{-}(\Lambda/\Sigma^{0})$

- Scattered electron e' detected in two different regions.
- Low- Q^2 region to study quasi-real photoproduction e' detected in the FT system which covers a very forward polar angle range of 2^o to 5^o .
- High- Q^2 region to study electroproduction e' detected in the FD system which covers a forward polar angle range of 5^o to 35^o .
- Charged kaons detected in the CLAS12 detector (FD) in coincidence with scattered electrons.
- Analyzed Fall2018 and Spring2019 data. Total six data sets analyzed with FT/FD electron separately.

Acknowledgements

• This work is funded by DOE Grant **DE-SC0013620**

Charged Kaon Selection

- Kaons detected in FD ($5^o < \theta_{K^{\pm}} < 35^o$).
- DC fiducial cut.
- $0.4 < P_{K^{\pm}} < 10.604 \text{ GeV}$.
- $0.4 < \beta_{K^{\pm}} < 1.05$.
- $-10 < v_{\kappa^{\pm}}^{z} < 1 \text{ cm}.$
- Momentum dependent vertex time cut.

Missing Mass Spectra

- $\mathcal{E}^-(1320), \mathcal{E}^-(1530)$ clearly visible (First-time seen from electroproduction data) in the $MM(e'K^+K^+)$ distributions.
- Smeared Λ/Σ^0 visible in the $\mathrm{MM}(e'K^+K^+K^-)$ distributions.
- Background template modeled with event mixing technique.
- Fit uses Gaussian convolution with polynomial bkgd template.

$\mathbf{MM} = \mathbf{gaus}(\Lambda) + \mathbf{gaus}(\Sigma^0) + \mathbf{C}^*[\mathbf{bkgd}]$

Background Shape in the $MM(e'K^+K^+)$ for $e'K^+K^+K^-$ Events

• Used multiple techniques (Event Mixing, Sideband, Fit weighting) to model background shape.

MC Simulation

- Performed GEANT4-based MC simulation for reaction efficiency.
- MC tuning was performed by measuring known \mathcal{E}^- (1320) width as a function of the momentum smearing factor to derive experimental resolution.
- \mathcal{E}^{*-} (1820) state experimental mass resolution inferred from MC.

 $ep \to e'K^+K^+ \, \Xi^{*-}(1820) \to e'K^+K^+ \, K^-(\Lambda/\Sigma^0)$

Signal Yield/Statistical Significance

 $\mathbf{MM} = \mathbf{gaus}(\mathcal{E}^{*-}(1820) \mathbf{fixed} \mu/\sigma) + \mathbf{C}^{*}[\mathbf{bkgd}]$

- Allowed only signal strength to fluctuate in the fit.
- Implemented maximum log-likelihood ratio ($\lambda = \frac{max(L(X/H_1))}{max(L(X/H_0))}$) test to determine 95% CL-boundaries for small signals over a background.
- Test Statistics (TS) = $-2\ln\lambda$.
- Statistical Significance in terms of $\sigma = \pm \sqrt{TS}$.

Preliminary Cross Section Upper Limit for $ep \rightarrow e'K^+K^+\Xi^{*-}(1820)$

 Converted 95% upper-limit yield to upper-limit on the cross section in FT-e $Q^2(10^{-2} - 0.3 \text{ GeV}^2)$ and FD-e $Q^2(10^{-1} - 0.6 \text{ GeV}^2)$ range. Our preliminary result for the upper limit cross section is extracted to be approximately around 2 nb and further work to set on the production cross section of the reaction $ep \rightarrow e'K^+K^+\Xi^{*-}$ as a function of \mathcal{Z}^{*-} mass is in progress.

Summary

- No statistically significant \mathcal{E}^{*-} (1820) signal was observed from the preliminary data analysis using CLAS12 Forward Detector acceptance.
- Estimated upper limit on the \mathcal{E}^{-*} (1820) yield using maximum loglikelihood ratio test method for counts and fit statistics.
- Upper limits on the production cross section for ep
 ightarrow $e'K^+K^+E^{*-}$ (1820) is being investigated for low- Q^2 and high- Q^2 electroproduction processes.