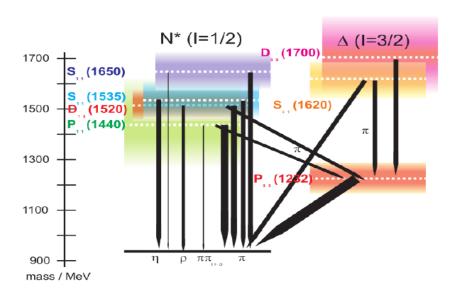

Alessandra Filippi INFN Torino

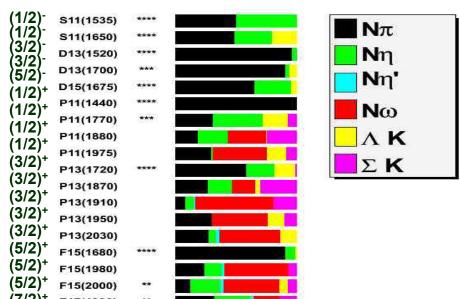
STRONG2020 Hadron Spectroscopy General Workshop

TUM Munich

September 16, 2022

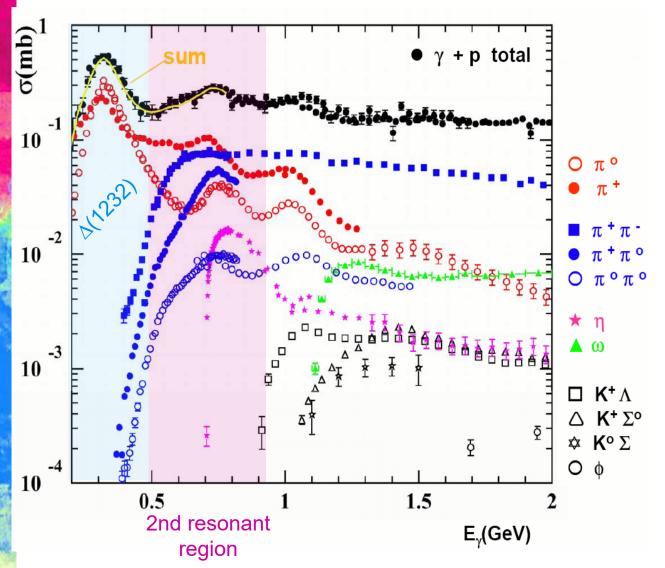
The light baryon (N^* , Δ) spectrum in the Constituent Quark Model




 Quarks confined into colorless hadrons

- Description by first principle QCD and constituent Quark Models:
 - Blue lines: expected states
 - Yellow/orange boxes: observations

The light baryon spectrum: experimental situation



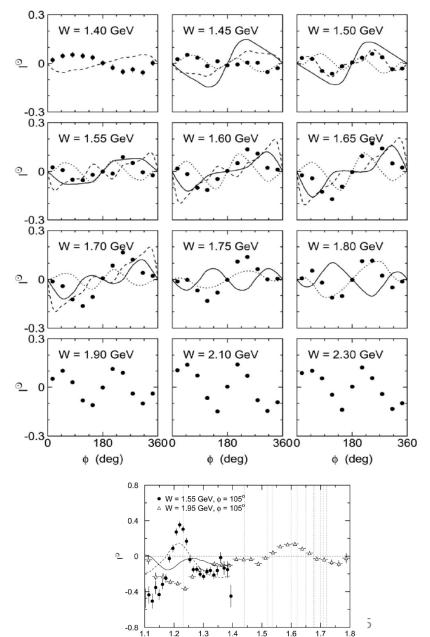
- Lowest lying N* and Δ * resonances
 - 1.3-2 GeV mass range: second resonant region
 - Overlapping states in the same mass region
 - Broad widths (short lifetimes)
 - Shared decay modes
- Most of the available information from pion/kaon beams experiments
 - Missing states: too small couplings with mesons?
- How to disentangle each signal and spot missing resonances?
 - Difficult task if based only on the measurement of cross-sections
 - Use new approaches: analysis of polarization observables (additional information: spin)
 - Perform precision measurements in as many reactions as possible

N^*/Δ^* in photoproduction reactions

Photonuclear cross sections

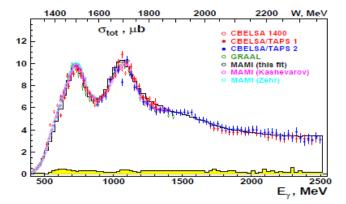
- Photon induced reaction could favor the formation of missing resonances which might couple strongly to the γN vertex
- γ reactions not studied extensively in the past lack of good enough (energy/intensity) photon beams
- Dominant contributions to the "second resonant region": double-pion and $\boldsymbol{\eta}$ channels
 - Double-pion photoproduction: good tool to investigate this mass region

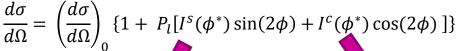
Photoproduction of $\pi^+\pi^-$ pairs from protons with circularly polarized

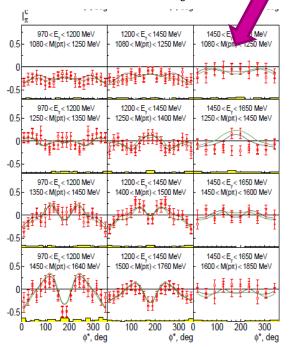

beam

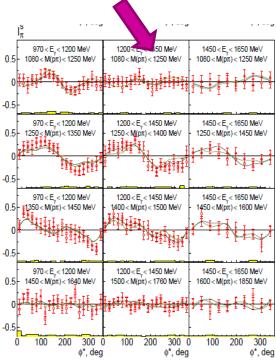
S. Strauch et al. (CLAS) PLR95 (2005), 162003

- CLAS data: 1.35 < W < 2.30 GeV
 - Missing resonances predicted to lie in the region W > 1.8 GeV
- Circularly polarized photon beam, no polarization specified for target and recoil proton
- First measurement of beam-helicity asymmetry distributions as a function of the helicity angle:

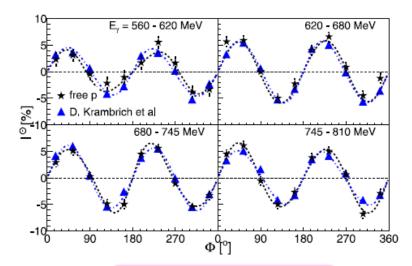

$$I^{\odot} = \frac{1}{P_{\gamma}} \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}$$

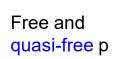

- Odd trend in all W sub-ranges
- Large asymmetries which change with W up to 1.8 GeV
- Compared with models based on electroproduction of double-charged pions including a set of quasi-two body intermediate states (Mokeev et al.):
 - $\pi \Delta$, ρN , $\pi N(1520)$, $\pi N(1680)$ + contributions from $\Delta(1600)$, N(1700), N(1710), N(1720)
 - The agreement is not satisfactory, calls for a more detailed description
 - The I^{\odot} observable is critically sensitive to interferences

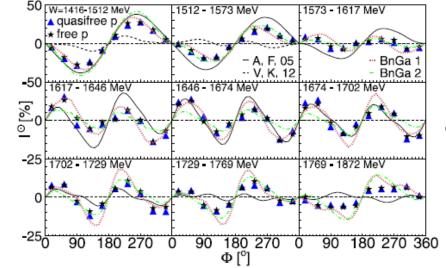


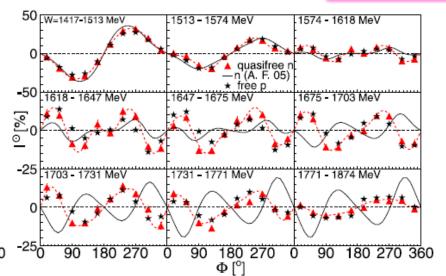

Photoproduction of $\pi^0\pi^0$ pairs off protons V. Sokhoyan (CB@ELSA/TAPS) EPJ A51 (2015), 95

- The double- π^0 production is suitable to investigate the $\Delta(1232)$ π intermediate channel
 - Less channels contribute compared to the charged pion channel, especially to the non resonant background
 - Diffractive ρ production
 - Dissociation of the proton into $\Delta^{++}\pi^{-}$
 - π exchange is not possible
- Use of real linearly polarized photons (ELSA) from 600 MeV to 2500 MeV: access to the 4th resonance region
- Extraction of:
 - total cross section
 - PWA of the Dalitz plot
 - Beam-helicity asymmetries for double- π^0 production on the proton

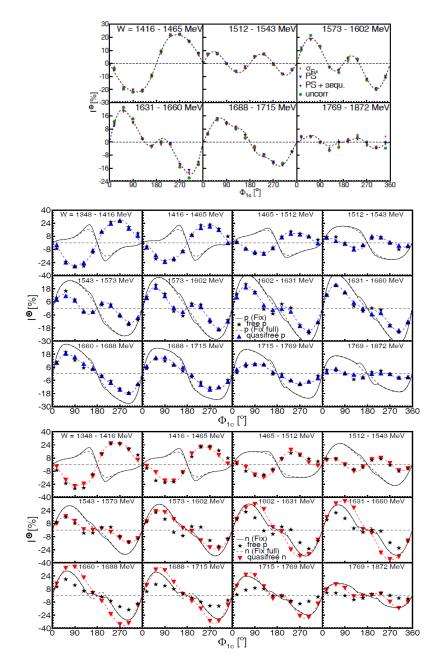



Photoproduction of $\pi^0\pi^0$ pairs from protons and neutrons


M. Oberle et al. (CB, TAPS & A2 @MAMI) PLB271 (2013), 237


- Beam-helicity asymmetries in double- π^0 production on LH₂/LD₂ target (free p + quasi-free p & n) with circularly polarized photons up to 1.4 GeV @MAMI
- I^{\odot} evaluated through cross-section asymmetries
- Identical beam-helicity asymmetry measured for free and quasi-free protons; very similar results from neutrons
 - Expected up to the second resonance region (W < 1.6 GeV)
 - Surprising at larger energies due to difference resonances produced!
- Reasonable reproduction of I^{\odot} trend by Bonn-Gatchina and two-pion MAID models (much worse for Valencia), at least up to the second resonance region

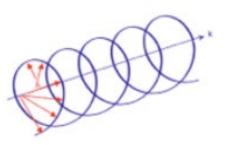
$$I^{\odot}(\varphi) = \sum_{n=1}^{\infty} A_n \sin(n\varphi)$$



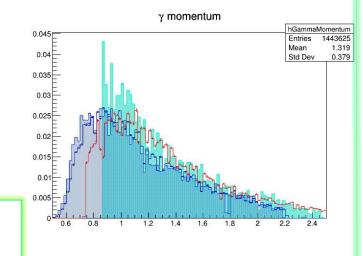
quasi-free n

Photoproduction of $\pi^0\pi^{\pm}$ pairs from protons and neutrons

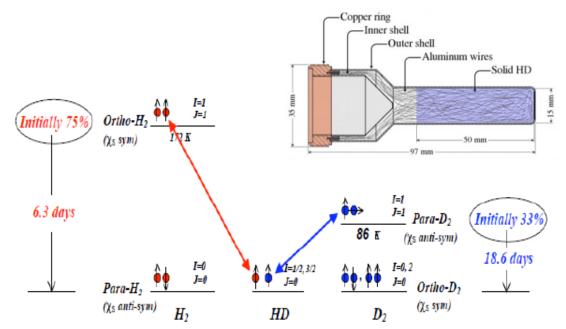
M. Oberle et al. (CB, TAPS & A2 @MAMI) EPJ A (2014), 50


- Beam-helicity asymmetries in double- π with mixed charge production on LH_2/LD_2 target (free p + quasifree p & n) with circularly polarized photons up to 1.4 GeV @MAMI
 - Sensitive channels to ρ^{\pm} production effects
 - More background-populating channels compared to $2\pi^0$
- I^o evaluated through cross-section asymmetries ordering particles by charge and by mass
- Good agreement between measurements on free and quasi-free proton, reasonable with quasi-free neutrons
- Worse agreement with models compared to $2\pi^0$, especially at higher energies:
 - more contributions from mixed charge channels, call to finer tuning of models
 - Two-pions MAID model behaves better, overall
 - Beam-helicity asymmetries are very sensitive to interference terms

Experimental method – polarized beam and target


CLAS-g14 data taking (2011-2012): *circularly polarized* photon beam with momentum up to 2.5 GeV/c interacting on a cryogenic HD *longitudinally* polarized target

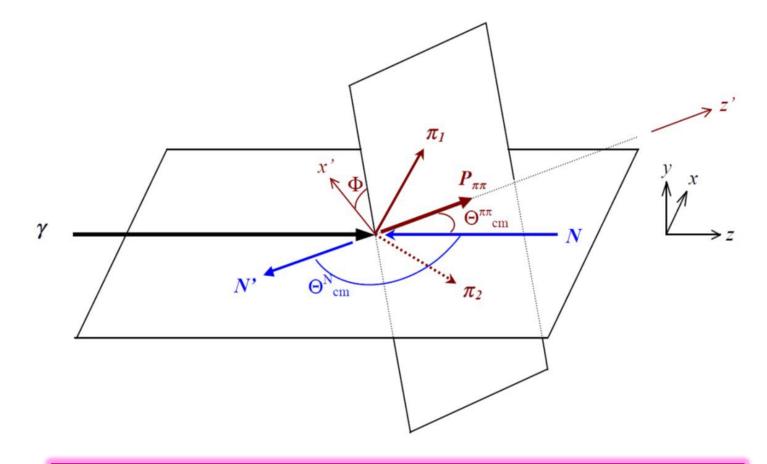
- Beam: circularly polarized photons by bremsstrahlung from a longitudinally polarized electron beam (>85%) through a gold foil radiator
 - Circular: ↑/↓ (960 Hz flip frequency)
 - Energy dependent γ polarization



$$x = \frac{E_{\gamma}}{E_{beam}}$$

$$\delta_{\odot} = P_{el} \frac{4x - x^2}{4 - 4x + 3x^2}$$

- Target: "brute-force + aging" polarization method (< 30%)
 - Longitudinal (along beam direction): ⇒/<=
 - Fixed in different data-sets
 - Protons/neutrons



The available data sets

- 11 data sets available characterized by different conditions:
 - maximum e^- beam energy and the degree of e^- beam polarization
 - target polarization extent (sometimes a critical parameter)
 - torus magnet polarization (determining the event acceptance)
 - trigger
- Only homogeneous/proper data samples can be combined to extract results

	Data set	statistics	$\Lambda_{ extsf{D}}$	Λ _H	< / >	e ⁻ beam pol.	e ⁻ beam energy	Torus pol	trigger
V	Silver1	830M	0.256	0.147	0.201	-0.82	2.28		1р
	Silver2	1170M	0.230	-0.143	0.043	-0.76	2.28		1р
	Silver3	250M	0.209	-0.003	0.103	-0.76	2.28	+	2р
	Silver4	820M	-0.172	-0.008	0.046	-0.76	2.28	+	2р
	Silver5a	1750M	-0.155	-0.008	-0.082	+0.76	2.28	+	2p 1p pr8
	Silver5b	3081M	-0.155	-0.008	-0.082	+0.89	2.23	+	2p 1p pr8
וכטמוועם מוועם	Silver6a	130M	-0.018	-0.025	-0.022	-0.89	2.23	+	2 p
=	Silver6b	1200M	-0.018	-0.025	-0.022	-0.89	2.23		1 p
	Gold2a	440M	0.268	0.269	0.27	-0.88	2.54	+	2p 1p pr16
	Gold2b	1660M	0.268	0.269	0.27	-0.83	2.54	+	2p 1p pr 16
	Gold3	88M	0.158	0.183	0.17	-0.83	2.54	+	2p 1p pr 16

Study of polarization observables in the $\vec{\gamma} \vec{N} \to \pi^+ \pi^- N$ reaction

$$rac{d\sigma}{dx_i} = \sigma_0 \{ (1 + \Lambda_z \cdot \mathbf{P_z}) + \delta_\odot (\mathbf{I}^\odot + \Lambda_z \cdot \mathbf{P}_z^\odot) \}$$

- The differential cross-section can be expressed by four contributions which depend on polarization observables weighted by the extent of beam δ_{\odot} and/or the target Λ polarization
- The trend of the polarization observables depends on the resonance content in a given energy range
- Polarization observables are bilinear combinations of partial amplitudes (Roberts, Oed PRC71 (2005), 0552001): very sensitive to interference effects 11

Polarization observables extraction

• Problem: extract from the number of collected events the I° , P_z , P°_z observables as a function of the Φ azimuthal angle in the helicity reference system, in W energy ranges

$$P_z = \frac{1}{\Lambda_z} \frac{[N(\rightarrow \Rightarrow) + N(\leftarrow \Rightarrow)] - [N(\rightarrow \Leftarrow) + N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow) + N(\leftarrow \Rightarrow)] + [N(\rightarrow \Leftarrow) + N(\leftarrow \Leftarrow)]}$$

$$I^{\odot} = \frac{1}{\delta_{\odot}} \frac{[N(\rightarrow \Rightarrow) + N(\rightarrow \Leftarrow)] - [N(\leftarrow \Rightarrow) + N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow) + N(\rightarrow \Leftarrow)] + [N(\leftarrow \Rightarrow) + N(\leftarrow \Leftarrow)]}$$

$$P_z^{\odot} = \frac{1}{\Lambda_z \delta_{\odot}} \frac{[N(\rightarrow \Rightarrow) + N(\leftarrow \Leftarrow)] - [N(\rightarrow \Leftarrow) + N(\leftarrow \Rightarrow)]}{[N(\rightarrow \Rightarrow) + N(\leftarrow \Leftarrow)] + [N(\rightarrow \Leftarrow) + N(\leftarrow \Rightarrow)]}$$

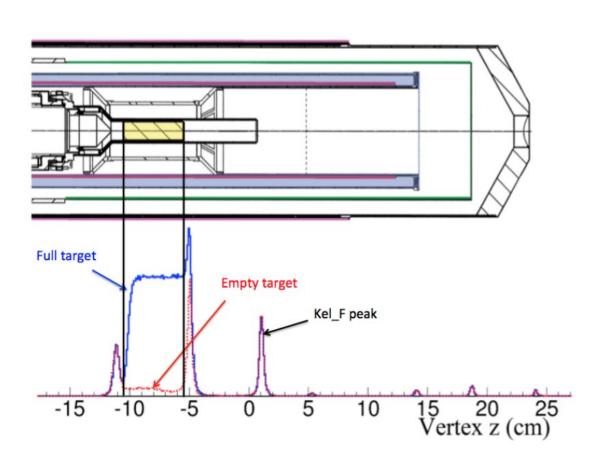
- Related to differential cross-section asymmetries
- Depending on the relative beam/target spin configurations
- Two data sets with opposite target (⇒/⇐) polarizations needed

Polarization asymmetries in every ϕ_{hel} bin

$$rac{d\sigma}{dx_i} = \sigma_0\{(1+\Lambda_z\cdot \mathbf{P_z}) + \delta_\odot(\mathbf{I}^\odot + \Lambda_z\cdot \mathbf{P}_z^\odot)\}$$

- This equation (Roberts et al., PRC 718(2005), 055201) can be split in four depending on the sign combination of beam helicity and target polarization
- Two data sets with opposite target polarization need to be used (but properly normalized)
- The system of equations can be solved analytically extracting, in every bin, I° , P_z , P°_z and σ_0 as solutions

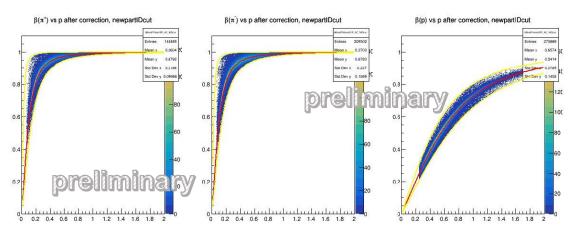
$$\begin{split} N_{exp}^{\rightarrow \Longrightarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_0 \mathbf{L} \; \boldsymbol{\varepsilon} \big[1 + \Lambda_z P_z + \delta_{\odot} (I_{\odot} + \Lambda_z P_z^{\odot}) \big] \\ N_{exp}^{\leftarrow \Longrightarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_0 \mathbf{L} \; \boldsymbol{\varepsilon} \big[1 + \Lambda_z P_z - \delta_{\odot} (I_{\odot} + \Lambda_z P_z^{\odot}) \big] \\ N_{exp}^{\rightarrow \Leftarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_0 \mathbf{L} \; \boldsymbol{\varepsilon} \big[1 - \Lambda_z P_z + \delta_{\odot} (I_{\odot} - \Lambda_z P_z^{\odot}) \big] \\ N_{exp}^{\leftarrow \Leftarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_0 \mathbf{L} \; \boldsymbol{\varepsilon} \big[1 - \Lambda_z P_z - \delta_{\odot} (I_{\odot} - \Lambda_z P_z^{\odot}) \big] \end{split}$$

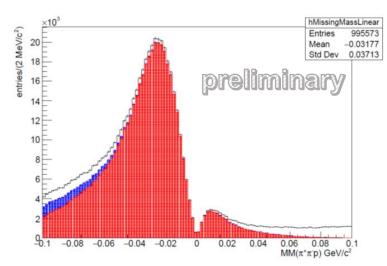


$$I_{\odot} = \frac{\frac{N_{1}^{\rightarrow \Rightarrow} - N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}} + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\frac{\mathsf{Leff1}}{\mathsf{Leff2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow} - N_{2}^{\leftarrow \Leftarrow}}{\delta_{\odot 2}}}{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathsf{Leff1}}{\mathsf{Leff2}} (N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}$$

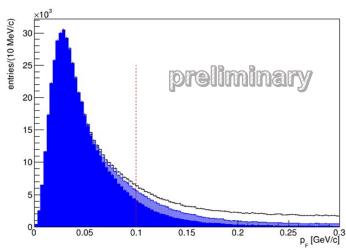
$$P_{z}^{\odot} = \frac{1}{\Lambda_{z2}} \cdot \frac{\frac{N_{1}^{\rightarrow \Rightarrow} - N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}} - \frac{\mathsf{Leff1}}{\mathsf{Leff2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow} - N_{2}^{\leftarrow \Leftarrow}}{\delta_{\odot 2}}}{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathsf{Leff1}}{\mathsf{Leff2}} (N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}$$

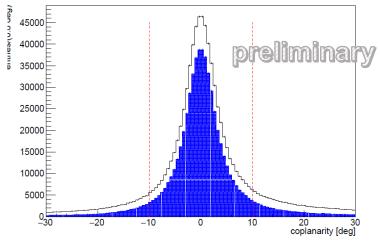
$$P_{z} = \frac{1}{\Lambda_{z2}} \cdot \frac{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) - \frac{\mathsf{Leff1}}{\mathsf{Leff2}} \cdot (N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathsf{Leff1}}{\mathsf{Leff2}} (N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}{(N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}$$


Experimental data: empty target subtraction

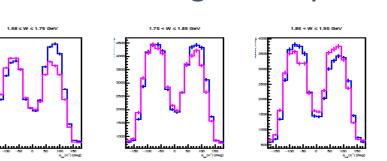

- Selection of events from the HD target: fiducial cut in r and z
- The events selected in the fiducial volume of the target contain the contribution from the target walls
 - Empty target subtraction needed
 - Relative normalization of different runs: height of Kel-F wall peak
 - Two empty-target runs available with opposite torus normalizations to perform subtraction
- Events in the Kel-F peak also used for relative luminosity normalizations between different data sets

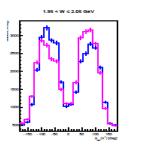
Data selection – exclusive $\vec{\gamma}\vec{p} \rightarrow \pi^+\pi^-p$ reaction

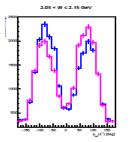

Description	Cut					
Particle multiplicity	1 negative, 2 positives					
Time coincidence	Time coincidence between: 1 proton, 1 π^+ , 1 π^-					
$2\pi p$ z-vertex in HD target	$-9.5 < z_{vertex} < -5.8 \text{ cm}$					
$2\pi p$ pId: β_{corr}	$p_{\pi^{\pm}}/\sqrt{p_{\pi^{p_m}}^2 + (m_{\pi} - 80 \text{ [MeV]})^2} \le \beta_{\pi^{\pm}}^{corr} \le p_{\pi^{\pm}}/\sqrt{p_{\pi^{\pm}}^2 + (m_{\pi} + 80 \text{ [MeV]})^2}$					
$2\pi p$ prd. p_{corr}	$p_p/\sqrt{p_p^2 + (m_p - 200 \text{ [MeV]})^2} \le \beta_p^{corr} \le p_p/\sqrt{p_p^2 + (m_p + 200 \text{ [MeV]})^2}$					
	$ \Delta(\beta_p) < 0.08$					
$2\pi p \text{ pId: } \Delta\beta $	$p_{\pi^{\pm}} \le 500 [\text{MeV/}c]: \Delta(\beta_{\pi^{\pm}}) < 0.08$					
	$p_{\pi^{\pm}} \ge 500 \left[\text{MeV}/c \right] : \left \Delta(\beta_{p)^{\pm}} \right) \right < 0.2$					
$2\pi p$ fiducial cuts	π^+ && π^- && p within fiducial volume					
Missing mass for proton pId	$0.824 \le \text{m.m.}(\pi^+\pi^-) \le 1.052 \text{ [GeV}/c^2\text{]}$					
Total missing mass	$\text{m.m.}(\pi^+\pi^-p) < 0 \; [\text{GeV}/c^2]$					
Fermi momentum	$p_F < 100 \mathrm{MeV}/c$					
Coplanarity	$ coplanarity < 10^{\circ}$					

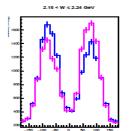

Particle ID for $\pi^+\pi^-$ and p based on TOF Further selection on $(\pi^+\pi^-)$ missing mass to identify the proton

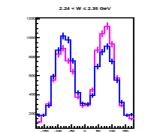
Total missing mass cut

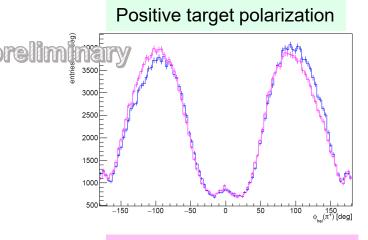

Missing momentum cut to discard reactions without spectator at rest

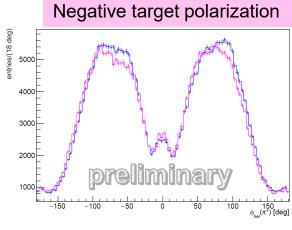


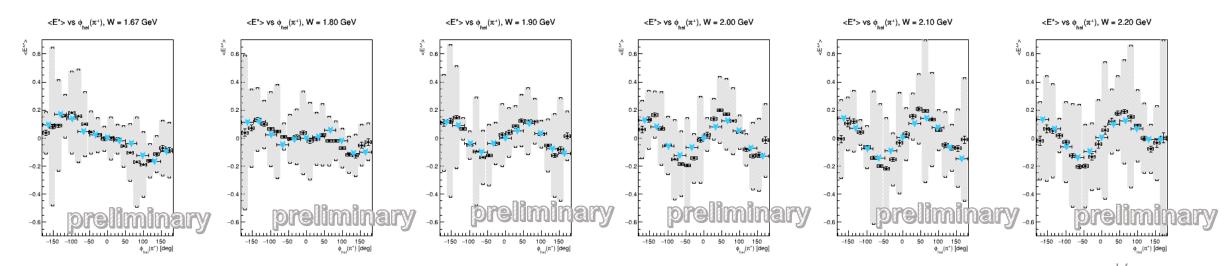

Coplanarity cut for pion pairs


Experimental angular distributions


- Needed input: angular distributions (ϕ_{hel})
- Bin by bin: number of events selected with
 - Given helicity (positive/negative in the same data set)
 - Given target polarization (in different data sets)
 - Selection in W energy ranges (100 MeV wide window)
 - Counts to be properly normalized between different data sets
- Slight differences when selecting different combinations of helicities/target polarization: origin of the investigated asymmetries



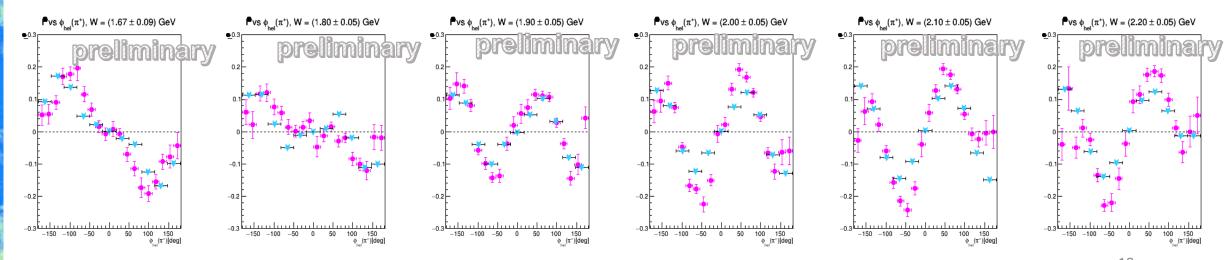




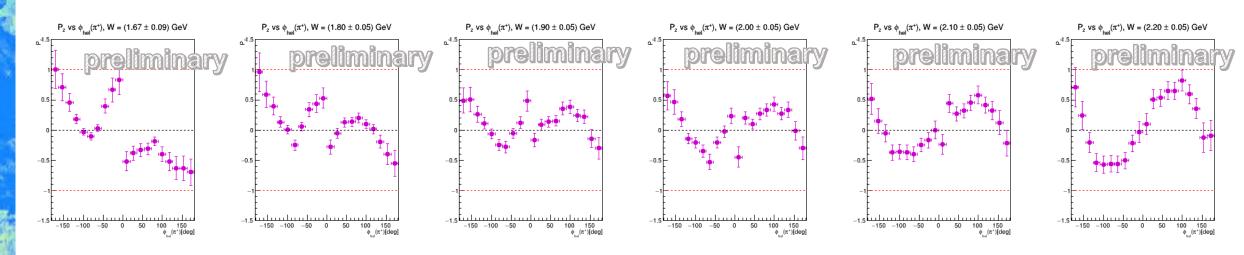
Evaluation of experimental beam-helicity asymmetries E*

- Similar to the extraction of beam-helicity asymmetry by Strauch, the E* variable can be extracted from the data, matching proper samples (with similar experimental conditions, and extracting the weighted average for all samples)
- For each data set:

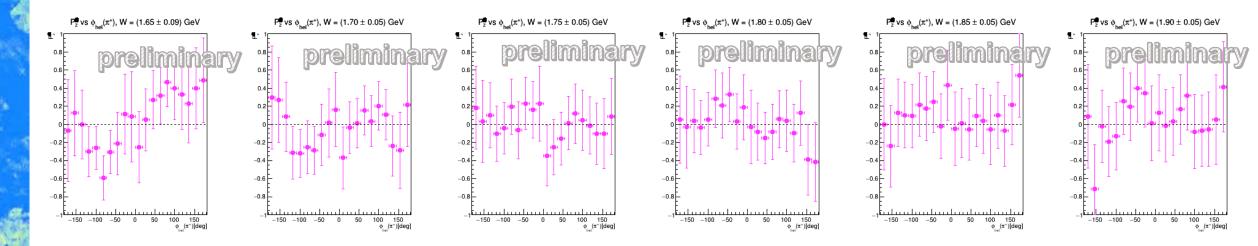
$$E^* = \frac{1}{\delta_{\odot}} \frac{N^+ - N^-}{N^+ + N^-}$$


- The E* values match fairly well with previous measurements with polarized beam only (blue points)
- Systematic errors (grey bars) from spread of values obtained in different data sets

Blue points from S. Strauch et al., CLAS Coll., PRL 95 (2005), 162003


Preliminary results - I^o on proton

- Extraction of polarization asymmetries from the equation by Roberts et al., choosing proper data sets with matching helicity and target polarization
- According to general symmetry principles I^{\odot} is expected to be an *odd* function of the helicity angle
- It does not depend on the target polarization
- The trend is in reasonable agreement with the earlier observations by CLAS based on a different data-set (unpolarized target)


Preliminary results $-P_z$ on proton

- No other results available for comparisons: first results ever
- P_z expected to be odd based on partial amplitudes symmetry
 - Vanishing at zero angle: coplanarity condition
 - Beware: when the helicity angle is oriented in the bottom hemisphere a sign flip occurs in Roberts' equations and, consequently, in the parity of the solutions
- The odd trend shows a discontinuity at zero for low W energies, with an improving symmetric shape as long as W increases
 - The lack of left/right symmetry could be due to instrumental reasons (different acceptance, ...)

Preliminary results – P_z^{\odot} on proton

- No other results available for comparisons: first results ever
- P_z° expected to be even based on partial amplitudes symmetry
- P_z° is, in general, almost compatible with zero (within errors)
 - Large statistical uncertainties obtained from the error propagation of the system solutions small extent of target polarization (23% max.)

Summary and outlook

- Double-pion photoproduction with polarized beam and/or target as a novel tool to extract information about the baryonic spectrum
 - γp channel
 - Analysis completed
 - extraction of results for all compatible data set pairs underway
 - Final evaluation of systematics in progress (take care of correlations among the sets)
 - Outlook: γn channel in progress
 - Same data analysis chain used for γp to be applied to the $\pi^+\pi^- n(p)$ final state
 - Use the same W binning and overall analysis approach
 - Stay tuned: some novel results upcoming!
- The interpretation of results in terms of partial amplitudes contribution call for new models updating the interaction pattern and reproducing all the new extracted observables
 - So far, none of the available reaction models agrees completely with the asymmetries extracted from reactions involving the production of charged pion pairs