# $G_{Ep}/G_{Mp}$ with an 11 GeV Electron Beam in Hall C

E.J. Brash, M.K. Jones, C.F. Perdrisat, V. Punjabi

and the Gep-IV Collaboration

Based on LoI 12-06-103 to PAC30

#### **Recoil Polarization Measurements**



# Gep-IV: Basic Plan

• Extend the measurement of  $G_{\rm Ep}/G_{\rm Mp}$  to the largest value of Q<sup>2</sup> possible using base equipment together with existing dectectors in Hall C

- Hall C SHMS, equipped with the existing Hall C FPP, for proton detection

-The existing BigCal detector for electron detector - perfect match to the SHMS



# Gep-IV: Issues for Consideration

1. Spin Precession in the SHMS

2. Radiation Damage to BigCal

3. CH<sub>2</sub> Analyzing Power

# Gep-IV: Spin Precession in the SHMS

• The proton spin components precess in the magnetic elements of the SHMS, so that:

$$\begin{pmatrix} \mathbf{P}_{\mathbf{n}}^{\mathbf{fp}} \\ \mathbf{P}_{\mathbf{t}}^{\mathbf{fp}} \\ P_{l}^{fp} \end{pmatrix} = \begin{pmatrix} S_{nn} & \mathbf{S}_{\mathbf{nt}} & \mathbf{S}_{\mathbf{nl}} \\ S_{tn} & \mathbf{S}_{\mathbf{tt}} & \mathbf{S}_{\mathbf{tl}} \\ S_{ln} & S_{lt} & S_{ll} \end{pmatrix} \begin{pmatrix} P_{n}^{tar} \\ \mathbf{P}_{\mathbf{t}}^{tar} \\ \mathbf{P}_{\mathbf{l}}^{tar} \end{pmatrix}$$

• Horizontal bender leads to mixing of long. and transverse components

$$(\Delta P_t^{tar})^2 = \frac{2}{NA^2} (\cos^2 \phi_{hb} + \frac{\sin^2 \phi_{hb}}{\sin^2 \phi_d})$$
$$(\Delta P_l^{tar})^2 = \frac{2}{NA^2} (\sin^2 \phi_{hb} + \frac{\cos^2 \phi_{hb}}{\sin^2 \phi_d})$$

For  $Q^2 = 13 \text{ GeV}^2$ ,  $\sin \phi_d \approx 1$ , and thus  $\cos^2 \phi_{hb} + \frac{\sin^2 \phi_{hb}}{\sin^2 \phi_d} \approx 1$ 

# Gep-IV:BigCal Radiation Damage

- Affects energy resolution
  - we are fairly insensitive to this.
- Main concern:
  - relatively high hardware threshold to keep the BigCal rates low
- Result of GEANT Simulation:
  - Curing about once per week in Gep-IV
- Use maintenance days -
  - need four hours of curing to recover one week of damage



#### SHMS Angular Acceptance



$$\Delta \theta_p = \pm 25mr$$
$$\Delta \phi_p = \pm 50mr$$
$$\Delta \Omega_p = 5msr$$

Momentum resolution = 1%

Angular resolution = 0.5 mr

### **Electron Kinematics**

| Q <sup>2</sup>      | Jacobian | $\Delta 	heta_{_{ m e}}$ | $\Delta \phi_{_{e}}$ |
|---------------------|----------|--------------------------|----------------------|
| (GeV <sup>2</sup> ) |          | (mr)                     | (mr)                 |
| 6.0                 | 1.71     | +/- 32.7                 | +/- 65.4             |
| 10.5                | 4.86     | +/- 55.1                 | +/- 110              |
| 13.0                | 4.57     | +/- 53.4                 | +/- 107              |

# Electron Kinematics (Cont'd)

Target-Detector Distance = 4.5m Target Length = 30 cm

| Q <sup>2</sup><br>(GeV <sup>2</sup> ) | $\Delta y_e(cm)$ | $\Delta x_e(cm)$ |
|---------------------------------------|------------------|------------------|
| 6.0                                   | 44.9             | 58.9             |
| 10.5                                  | 68.0             | 99.6             |
| 13.0                                  | 64.5             | 96.6             |

# Gep-IV: CH<sub>2</sub> Analyzing Power

As a by-product of the polarization • transfer experiments, we can 0.30extract the (average/maximum) CH<sub>2</sub> Azh04 Gay01 analyzing power in the FPP 0.25Chu91 Ale99 Pun05 Empirically, the maximum analyzing 0.20٠ GEp(3), preliminary power scales as 1/p, the shape of the distribution scales in a similar 0.15CH manner: this allows us to make  $13 \text{ GeV}^2$ accurate predictions of the analyzing 0.10 C (graphite power at various momenta 0.05 In addition, full GEANT3 simulations • have been performed to estimate 0.00  $1/{\rm p}^{0.2}({\rm GeV}^{0.3}/{\rm c})^{-1}$ 0.1 0.50.0 0.4the scattering efficiency (describes Gep-III data well)

### Gep-IV: Kinematics

| $Q^2$   | $E_e$ | $\theta_e$ | $\mathbf{E}_{e'}$ | $\theta_p$ | $\mathbf{p}_p$ | $d\sigma/d\Omega_e$   | ε    | $\chi$ | $\Delta\Omega_e$ |
|---------|-------|------------|-------------------|------------|----------------|-----------------------|------|--------|------------------|
| $GeV^2$ | GeV   | deg        | GeV               | deg        | GeV/c          | $cm^2/sr$             |      | deg    | msr              |
| 6       | 6.6   | 30         | 3.4               | 25         | 4.03           | $1.1 \times 10^{-35}$ | 0.72 | 145.4  | 8.6              |
| 10.5    | 8.8   | 35.5       | 3.20              | 16.7       | 6.47           | $3.5 	imes 10^{-37}$  | 0.55 | 229.7  | 24               |
| 13      | 11.0  | 31.3       | 4.07              | 15.7       | 7.81           | $1.6 	imes 10^{-37}$  | 0.58 | 276.5  | 23               |

Table 2: The proposed kinematics. Assumed SHMS spectrometer solid angle: 5 msr. Assumed beam characteristics: 75  $\mu$ A, 85% polarization. Assumed target: 30 cm LH<sub>2</sub>.

| $Q^2$            | $E_e$ | COM                 | absolute $\Delta (G_{Ep}/G_{Mp})^*$ | time |
|------------------|-------|---------------------|-------------------------------------|------|
| GeV <sup>2</sup> | GeV   |                     |                                     | days |
| 6.0              | 6.6   | $3.9	imes10^{-3}$   | 0.04                                | 4    |
| 10.5             | 8.8   | $1.5 	imes 10^{-3}$ | 0.11                                | 30   |
| 13.0             | 11.0  | $1.1 	imes 10^{-3}$ | 0.13                                | 60   |

#### Gep-IV: Predictions



#### Conclusions

- Many competing/complementary theoretical models, with different approaches
- While most modern calculations describe the data well in the lower Q<sup>2</sup> regime, they begin to diverge significantly beyond the currently available data
- New data at higher Q<sup>2</sup> (for both proton and neutron) will place stringent constraints on available models, and will continue to motivate more advanced calculations
- Gep-IV will provide high quality data on the form factor ratio up to Q<sup>2</sup> = 13 GeV<sup>2</sup>, using existing/base equipment. The experiment can be carried out as soon as the 11 GeV electron beam is available in Hall C - could even be used as a commissioning experiment for the SHMS
- No major technical issues face this experiment hardware and software are "ready to go"

#### Gep-IV: Predictions



# Gep-IV vs. Gep-V

- Clean identification of elastic events is of crucial importance
  - SHMS has better momentum resolution
  - SBS has better angular resolution and y\_target resolution
- As a result, elastic identification will be accomplished in very different ways in the two experiments, resulting in different systematics
- SHMS will have much lower level of random/accidental background
- Gep-IV uses existing/base Hall C equipment this has technical as well as financial/funding advantages
- Gep-IV can be run very early post-upgrade
- Software algorithms are refined and well-tested

| $Q^2$            | $E_e$ | COM                 | Horiz. Bender | $\Delta (G_{Ep}/G_{Mp})^*$ | time |
|------------------|-------|---------------------|---------------|----------------------------|------|
| GeV <sup>2</sup> | GeV   |                     | Factor        |                            | days |
| 6.0              | 6.6   | $3.9 	imes 10^{-3}$ | 1.15          | 0.04                       | 4    |
| 9.0              | 8.8   | $2.0	imes10^{-3}$   | 1.70          | 0.11                       | 30   |
| 10.5             | 8.8   | $1.5	imes10^{-3}$   | 1.30          | 0.11                       | 30   |
| 12.0             | 8.8   | $1.2 	imes 10^{-3}$ | 1.01          | 0.12                       | 60   |
| 12.0             | 11.0  | $1.2 	imes 10^{-3}$ | 1.01          | 0.12                       | 60   |
| 13.0             | 11.0  | $1.1 	imes 10^{-3}$ | 1.00          | 0.13                       | 60   |
| 14.0             | 8.8   | $0.9	imes10^{-3}$   | 1.06          | 0.20                       | 120  |
| 14.0             | 11.0  | $0.9	imes10^{-3}$   | 1.06          | 0.16                       | 120  |

Table 6: Absolute uncertainties (not including systematics), and times required. The assumed beam intensity and electron beam polarization are 75  $\mu$ A and 0.85, respectively. The target length is 30 cm, and the SHMS solid angle is 5.0 msr.

\* Note that the increase in the error bar due to precession in the horizontal bender has been included.