LOI-09-003:

IncAs – Inclusive Asymmetries from Vector-Polarized Deuterium for a Precise Determination of Gⁿ_M at Intermediate Momentum Transfer

Michael Kohl

Hampton University and Jefferson Lab Virginia, USA

Neutron Magnetic Form Factor Gⁿ_M

*Ph.D. work of N. Meitanis (MIT) and B. O'Neill (ASU)

Pre-polarization era

- Gⁿ_M world data from unpolarized experiments
- Cross section ratio
 quasielastic ^{d(e,e'n)} ^{d(e,e'p)}
- + CLAS preliminary (final)
- Polarization era
- Gⁿ_M world data + ³He
 + BLAST preliminary
- No pol. data >0.6 (GeV/c)²
- Discrep./jump of several σ
- at Q² ~ 0.6-1.0 (GeV/c)²
- Uncertainties ?

The BLAST Detector

bax st

- Left-right symmetric
- Large acceptance: 0.1 < Q²/(GeV/c)² < 0.8 20° < θ < 80°, -15° < φ < 15°
- COILS B_{max} = 3.8 kG
- **DRIFT CHAMBERS** Tracking, PID (charge) $\delta p/p=3\%$, $\delta \theta = 0.5^{\circ}$
- CERENKOV COUNTERS e/π separation
- SCINTILLATORS
 Trigger, ToF, PID (π/p)
- NEUTRON COUNTERS
 Neutron tracking (ToF)

Extraction of Gⁿ_M

- Quasielastic ²H(e,e') inclusive
- Full Montecarlo simulation of the BLAST experiment
- Deuteron electrodisintegration by H. Arenhövel
- Accounted for FSI,MEC,RC,IC
- Beam-target vector asymmetry A^v_{ed} spin-parallel + perpendicular show sensitivity to Gⁿ_M

$$\begin{split} \mathsf{PWIA:} \\ A_{\perp} &\approx \frac{c \, \left(G_E^p / G_M^p\right)}{a + b \left(1 + \left(\frac{G_M^n / G_M^p}{M}\right)^2\right)} \\ A_{\parallel} &\approx \frac{d \left(1 + \left(\frac{G_M^n / G_M^p}{M}\right)^2\right)}{a + b \left(1 + \left(\frac{G_M^n / G_M^p}{M}\right)^2\right)} \end{split}$$

Extraction of Gⁿ_M

Enhanced sensitivity in super ratio

How to reconcile Gⁿ_M around 1 (GeV/c)²

- IncAs: Simultaneous measurement of inclusive beamvector asymmetries in equal, quasifree kinematics with 2 target spin orientations relative to momentum transfer
- Vector-polarized deuterium target (UVA), $\theta_d \sim = 45^\circ$ (left) $P_b^*P_t = 0.8^*0.3 = 0.24$, $F_{DF} = 0.8$, L=3*10³⁵ / (cm²s)
- HMS + SHMS / assuming solid angle 6 msr single-arm (e,e') left and right at symmetric angle

7

IncAs: Kinematic Coverage

D-Spin: $\theta_d = 45^\circ$

"Perpendicular" and "parallel" orientation well established at Q²~1-2 (GeV/c)²

IncAs: Count rates

Counts per day assuming luminosity L=3*10³⁵ / (cm²s) and 6 msr solid angle Cross section = elastic e-p + e-n Each point representing one angle setting (15°-35°)

9

Asymmetries for free nucleons

Error bars corresponding to 1 day / 6 msr / $3*10^{35}$ cm⁻²s⁻¹ / F_{DF}=0.8 / P_bP_t=0.24

IncAs: Inclusive Asymmetries: θ_d=45°

Error bars corresponding to 1 day / 6 msr / $3*10^{35}$ cm⁻²s⁻¹ / F_{DF}=0.8 / P_bP_t=0.24

IncAs: Inclusive Asymmetries: θ_d=45°

Error bars corresponding to 1 day / 6 msr / $3*10^{35}$ cm⁻²s⁻¹ / F_{DF}=0.8 / P_bP_t=0.24

IncAs: A precision Gⁿ_M measurement

IncAs: A precision Gⁿ_M measurement

IncAs: Theory and TAC Reports

- Theory report by J. Goity
- New method to resolve issue raised by x-sec ratio exps.
- Deuterium super-ratio method well established at BLAST
- Use of Deuterium having advantages over He-3
- Reduced systematic uncertainties
- Interesting to probe oscillation around dipole form factor
- Inclusive asymmetries providing optimal access to Gⁿ_M
- Excellent contribution to Jlab form factor program

IncAs: Theory and TAC Reports

- Systematic error on GMn due to uncertainties of GEp/GMp and GMp to be investigated
- Experimental checks of systematic errors at 2.2 GeV: spin angle mapping
- To verify clearance between beam, coils and spectrometers at all proposed angles
- HMS/SHMS (Hall C) or HRS² (Hall A), or HD-Ice (Hall B)
- 2.2 GeV has higher FOM in Hall A, but possible in Hall C
- 4.4+6.6 GeV only in Hall C

IncAs: Inclusive Asymmetries

- Inclusive asymmetries powerful tool for high precision measurement of Gⁿ_M to resolve current inconsistency
- Excellent control of systematic uncertainties through cancellations (efficiency, luminosity, polarization, ...)
- Super ratio method with enhanced sensitivity to Gⁿ_M, no precise knowledge of polarization required
- For perp/par kinematics, dR/R ~= dGⁿ_M/Gⁿ_M
- IncAs is a polarization method superior to He-3 at intermediate Q² to precisely relate form factors
- "Simple" measurement, only e,e' with standard equipm.